A cDNA library was constructed from the heading leaf in the early phase of the heading stage of Chinese cabbage (Brassica rapa L. ssp. pekinensis). By sequencing the randomly selected clones, 1363 sequences longer than 200 bp were found, with better trace data. After removing the poly(A) and contamination sequences, 1162 ESTs longer than 150 bp were obtained, of which 1102 shared significant similarity with known sequences in protein and nucleotide databases of the National Center for Biotechnology Information (NCBI) as revealed by searches using the BLASTX and BLASTN engines. Functional assignment of the ESTs was based on the method used in the Arabidopsis thaliana genome-sequencing project. About 77% of the putative protein sequences with known biological functions best matched with those of A. thaliana deposited in the non-redundant database of NCBI. These data suggest that Chinese cabbage is closely related to A. thaliana. This result is different from that reported in other Brassica species. At nucleotide level, however, 51% of the ESTs were homologous to those deposited for A. thaliana when all ESTs were searched against the est-others database. In addition, 60 ESTs had no homology with any of the plant gene sequences deposited in GenBank. These ESTs are very important for understanding the unique developmental process of Chinesecabbage and elaborating its genetic mapping. Among the genes with assigned functions, the most abundant representatives were those involved in protein synthesis and energy metabolism. With the 1162 ESTs, 895 non-redundant contigs were generated after being aligned using the Seqman II module of DNAStar software at the threshold of more than 80% homology over a minimum of 40 base pairs. Of these, 723 were singletons containing only one EST sequence, indicating that many kinds of such genes are expressed in the heading leaf of Chinese cabbage. An expression profile of Chinese cabbage heading leaf with the 1162 ESTs was therefore acquired in this work. This could be very useful for uncovering the mechanism of the heading process, which is the most obvious characteristic of Chinese cabbage and perhaps other related species, such as Brassica oleracea. This work could accelerate the finding and characterization of genes specifically expressed in the heading stage of Chinese cabbage.