We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Instrument delivery is critical part in vascular intervention surgery. Due to the soft-body structure of instruments, the relationship between manipulation commands and instrument motion is non-linear, making instrument delivery challenging and time-consuming. Reinforcement learning has the potential to learn manipulation skills and automate instrument delivery with enhanced success rates and reduced workload of physicians. However, due to the sample inefficiency when using high-dimensional images, existing reinforcement learning algorithms are limited on realistic vascular robotic systems. To alleviate this problem, this paper proposes discrete soft actor-critic with auto-encoder (DSAC-AE) that augments SAC-discrete with an auxiliary reconstruction task. The algorithm is applied with distributed sample collection and parameter update in a robot-assisted preclinical environment. Experimental results indicate that guidewire delivery can be automatically implemented after 50k sampling steps in less than 15 h, demonstrating the proposed algorithm has the great potential to learn manipulation skill for vascular robotic systems.
Inflammation plays a crucial role in the pathogenesis of major depressive disorder (MDD) and bipolar disorder (BD). This study aimed to examine whether the dysregulation of complement components contributes to brain structural defects in patients with mood disorders.
Methods
A total of 52 BD patients, 35 MDD patients, and 53 controls were recruited. The human complement immunology assay was used to measure the levels of complement factors. Whole brain-based analysis was performed to investigate differences in gray matter volume (GMV) and cortical thickness (CT) among the BD, MDD, and control groups, and relationships were explored between neuroanatomical differences and levels of complement components.
Results
GMV in the medial orbital frontal cortex (mOFC) and middle cingulum was lower in both patient groups than in controls, while the CT of the left precentral gyrus and left superior frontal gyrus were affected differently in the two disorders. Concentrations of C1q, C4, factor B, factor H, and properdin were higher in both patient groups than in controls, while concentrations of C3, C4 and factor H were significantly higher in BD than in MDD. Concentrations of C1q, factor H, and properdin showed a significant negative correlation with GMV in the mOFC at the voxel-wise level.
Conclusions
BD and MDD are associated with shared and different alterations in levels of complement factors and structural impairment in the brain. Structural defects in mOFC may be associated with elevated levels of certain complement factors, providing insight into the shared neuro-inflammatory pathogenesis of mood disorders.
To assess urban–rural disparities in the association between long-term exposure to high altitude and malnutrition among children under 5 years old.
Design:
A three-stage, stratified, cluster sampling was used to randomly select eligible individuals from July to October 2020. The data of participants, including demographic characteristics, altitude of residence, and nutritional status, were collected via questionnaire and physical examination.
Setting:
Tibet, China.
Participants:
Children under 5 years old in Tibet.
Results:
Totally, 1975 children under 5 years old were included in this study. We found that an additional 1000 m increase in altitude was associated with decreased Z-scores of height-for-age (β = –0·23, 95 % CI: –0·38, –0·08), Z-scores of weight-for-age (β = –0·24, 95 % CI: –0·39, –0·10). The OR for stunting and underweight were 2·03 (95 % CI: 1·51 to 2·73) and 2·04 (95 % CI: 1·38 to 3·02) per 1000 m increase in altitude, respectively; and OR increased rapidly at an altitude above 3500 m. The effects of long-term exposure to high altitudes on the prevalence of underweight in rural children were higher than that in urban children (P < 0·05).
Conclusions:
High-altitude exposure is tightly associated with malnutrition among children under 5 years old. Improving children’s nutrition is urgently needed in areas above 3500 m, especially in rural ones.
Adolescent suicide is a severe public health problem in low- and middle-income countries (LMICs), and adolescents who are victims of bullying have a higher risk of suicidal behaviours. However, detailed global data concerning the association between bullying victimisation and suicide are lacking; thus, further multicontinental studies exploring the association of bullying victimisation at different frequencies and types with suicidal behaviours are urgent.
Methods
The data were extracted from the Global School-based Student Health Survey (GSHS) (2010–2017) conducted in 40 LMICs (n = 151 184, mean age: 14.77 years, s.d.: 1.59, 54.2% females). Data concerning past-30-day bullying victimisation, past 12-month suicidal behaviours (suicidal ideation, suicidal plans and suicidal attempts) and other adverse health behaviours or outcomes were collected. Chi-square tests were used to explore the correlations among the main variables. A multivariable logistic regression and stratified logistic regressions were conducted to assess the associations.
Results
The overall prevalence of bullying victimisation, suicidal ideation, suicidal plans and suicidal attempts were 28.72, 12.64, 11.84 and 10.79%, respectively. The results showed a positive association of different frequencies and types of bullying victimisation with suicidal behaviours: suicidal ideation (odds ratio (OR) = 2.43, 2.06–2.87), suicidal plans (OR = 2.69, 2.28–3.17) and suicidal attempts (OR = 3.23, 2.73–3.82). Adolescents also reported the effects of being made fun of because of their religion: suicidal ideation (OR = 1.63, 1.41–1.88), suicidal plans (OR = 1.44, 1.24–1.66) and suicidal attempts (OR = 1.73, 1.50–1.98). Moreover, these associations varied among teenagers of different gender and body mass indexes (BMIs) and were stronger among males and adolescents who were underweight, overweight or obese.
Conclusions
Different types of bullying victimisation were positively related to suicidal behaviours; these associations varied among adolescents by gender and BMI. This study offers a theoretical basis for the identification of adolescents at a high risk of suicide and is beneficial for informing effective psychological interventions for constructing sound school environments, improving adolescents’ mental health and reducing the risk of suicide to promote health in LMICs and globally.
When a charge neutral drop impacts on a flat solid substrate, a small air bubble is always trapped underneath due to the lubrication pressure coming from the viscous stress in the squeezed air film. Herein we find experimentally and numerically that the process of the air entrapment and the initial contact state of the drop with the substrate can be profoundly altered via an external electric field. In an electric field, the induced electric stresses at the bottom of the drop increase drastically right before the drop contacts the substrate, which acts against the lubrication pressure, resulting in reduced initial contact radius and air bubble size. When the external electric field reaches a critical value, the electrical stress accelerates the flow near the bottom of the drop and generates a conical tip quickly instead of a dimple, resulting in a centre contact and eliminating the air bubble entrapment. Based on the dipole mirror charge model, we find the dimensionless strength of critical electric field scales with the square root of capillary number based on the air viscosity. This scaling law of the critical electric field for eliminating the air bubble entrapment is verified experimentally and numerically. This work may offer a new way to mitigate defects caused by air bubble entrapment for inkjet printing and droplet-based additive manufacturing.
Widely distributed Mid-Neoproterozoic mafic rocks of the Qilian – Qaidam – East Kunlun region record the tectonic evolution of the northeastern Tibetan Plateau. This study presents whole-rock geochemistry, zircon U–Pb geochronology and Hf isotopes for the Xialanuoer gabbros of the central South Qilian Belt (SQB). Zircon laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) U–Pb dating indicates that the gabbros were emplaced at ca. 738 Ma, indicating they are contemporaneous with mafic magmatism elsewhere in the northeastern Tibetan Plateau. The gabbros have low SiO2, Cr and Ni contents and Mg# values, are relatively enriched in light rare-earth elements (LREEs) and depleted in high-field-strength elements (HFSEs; e.g. Nb and Ta), have no positive Zr or Hf anomalies and have relatively high Nb/Ta but low Nb/La ratios. These data indicate that the Xialanuoer gabbros formed from calc-alkaline basaltic magmas that were originally generated by the partial melting of an enriched mantle of type-I (EMI-type) enriched region of the lithospheric mantle, underwent little to no crustal contamination prior to their emplacement, and have within-plate basalt geochemical affinities. Combining these data with the presence of widespread contemporaneous continental rift-related magmatism and sedimentation in the North Qilian, Central Qilian, South Qilian, Quanji, North Qaidam and East Kunlun regions suggests that the northeastern Tibetan Plateau underwent Mid-Neoproterozoic continental rifting, which also affected other Rodinian blocks (e.g. Tarim, South China, Australia, North America and Southern Africa).
The parasite Fasciola hepatica is an important zoonotic parasite. The development of an animal model of F. hepatica's life cycle is critical for studying the biological characteristics of the parasite in snails and mammals. Eggs of F. hepatica of bovine origin were cultured, and metacercariae were obtained after infection of Galba pervia snails. The life cycle system of F. hepatica was initiated in 2 different animals by orally infecting rabbits, SD rats and Kunming mice with the metacercariae. The animals' survival after infection, parasite migration in the animals and pathological damage to the liver were observed. We discovered that rabbits died due to acute suppurative hepatitis 60–69 days after infection, and eggs were found in the feces on day 63 of infection. The liver of SD rats showed punctate lesions on day 3 of infection, and further changes occurred as the infection progressed. However, liver repair was observed at week 9. SD rats survived for more than a year after infection and continued the F. hepatica life cycle. The liver lesions in Kunming mice after infection were similar but more severe than those in SD rats. Death was observed on the 31st post-infection day. We discovered that while rabbits, SD rats and Kunming mice can all be used as animal models of F. hepatica, SD rats are more suitable experimental animals in terms of tolerance and pathological response.
To assess the role of dietary creatine on myofiber characteristics and protein synthesis in muscle, we fed grass carp (Ctenopharyngodon idellus, initial body weight: 88.47 ± 1.44 g) creatine-supplemented diets (1.84, 5.91, 8.48, and 15.44 g/kg diet) for 8 weeks. Creatine supplementation did not affect growth performance, but significantly increased creatine contents in muscle and liver. At 8.48 g/kg, creatine decreased the activities of alanine transaminase and aspartate aminotransferase in serum, and improved hardness and chewiness of muscle due to shorter myofiber mean diameter, higher myofiber density and the frequencies of the diameters of class I and III and collagen content, longer sarcomere length, and upregulated mRNA levels of slow myosin heavy chains. Creatine supplementation upregulated the mRNA expressions of myogenic regulatory factors. The 8.48 g/kg creatine-supplemented diet significantly increased the contents of protein, total amino acids (AAs), essential AAs, and free flavor AAs in muscle, the protein levels of insulin-like growth factor I, myogenic differentiation antigen, and peroxisome proliferator-activated receptor-γ coactlvator-1α in muscle, and stimulated the phosphorylation of target of rapamycin (TOR) pathway in muscle. In summary, 8.48 mg/kg creatine improved fish health and skeletal muscle growth, and increased hardness and protein synthesis in muscle of grass carp by affecting myofiber characteristics and the TOR signaling pathway. A second-order regression model revealed that the optimal dietary creatine supplementation of grass carp ranges between 8.48 and 12.04 g/kg.
External modulation on thermal convection has been studied extensively to achieve the control of flow structures and heat-transfer efficiency. In this paper, we carry out direct numerical simulations on Rayleigh–Bénard convection accounting for both the modulation of wall shear and roughness over the Rayleigh number range $1.0 \times 10^6 \le Ra \le 1.0 \times 10^8$, the wall shear Reynolds number range $0 \le Re_w \le 5000$, the aspect-ratio range $2 \le \varGamma \le 4{\rm \pi}$, and the dimensionless roughness height range $0 \le h \le 0.2$ at fixed Prandtl number $Pr = 1$. Under the combined actions of wall shear and roughness, with increasing $Re_w$, the heat flux is initially enhanced in the buoyancy-dominant regime, then has an abrupt transition near the critical shear Reynolds number $Re_{w,cr}$, and finally enters the purely diffusion regime dominated by shear. Based on the crossover of the kinetic energy production between the buoyancy-dominant and shear-dominant regimes, a physical model is proposed to predict the transitional scaling behaviour between $Re_{w,cr}$ and $Ra$, i.e. $Re_{w,cr} \sim Ra^{9/14}$, which agrees well with our numerical results. The reason for the observed heat-transport enhancement in the buoyancy-dominant regime is further explained by the fact that the moving rough plates introduce an external shear to strengthen the large-scale circulation (LSC) in the vertical direction and serve as a conveyor belt to increase the chances of the interaction between the LSC and secondary flows within cavities, which triggers more thermal plumes, efficiently transports the trapped hot (cold) fluids outside cavities.
Emerging functional imaging studies suggest that schizophrenia is associated with aberrant spatiotemporal interaction which may result in aberrant global and local dynamic properties.
Methods
We investigated the dynamic functional connectivity (FC) by using instantaneous phase method based on Hilbert transform to detect abnormal spatiotemporal interaction in schizophrenia. Based on resting-state functional magnetic resonance imaging, two independent datasets were included, with 114 subjects from COBRE [51 schizophrenia patients (SZ) and 63 healthy controls (HCs)] and 96 from OpenfMRI (36 SZ and 60 HCs). Phase differences and instantaneous coupling matrices were firstly calculated at all time points by extracting instantaneous parameters. Global [global synchrony and intertemporal closeness (ITC)] and local dynamic features [strength of FC (sFC) and variability of FC (vFC)] were compared between two groups. Support vector machine (SVM) was used to estimate the ability to discriminate two groups by using all aberrant features.
Results
We found SZ had lower global synchrony and ITC than HCs on both datasets. Furthermore, SZ had a significant decrease in sFC but an increase in vFC, which were mainly located at prefrontal cortex, anterior cingulate cortex, temporal cortex and visual cortex or temporal cortex and hippocampus, forming significant dynamic subnetworks. SVM analysis revealed a high degree of balanced accuracy (85.75%) on the basis of all aberrant dynamic features.
Conclusions
SZ has worse overall spatiotemporal stability and extensive FC subnetwork lesions compared to HCs, which to some extent elucidates the pathophysiological mechanism of schizophrenia, providing insight into time-variation properties of patients with other mental illnesses.
To investigate temporal trends in coronavirus disease 2019 (COVID-19)-related outcomes and to evaluate whether the impacts of potential risk factors and disparities changed over time, we conducted a retrospective cohort study with 249 075 patients tested or treated for COVID-19 at Michigan Medicine (MM), from 10 March 2020 to 3 May 2021. Among these patients, 26 289 were diagnosed with COVID-19. According to the calendar time in which they first tested positive, the COVID-19-positive cohort were stratified into three-time segments (T1: March–June, 2020; T2: July–December, 2020; T3: January–May, 2021). Potential risk factors that we examined included demographics, residential-level socioeconomic characteristics and preexisting comorbidities. The main outcomes included COVID-19-related hospitalisation and intensive care unit (ICU) admission. The hospitalisation rate for COVID-positive patients decreased from 36.2% in T1 to 14.2% in T3, and the ICU admission rate decreased from 16.9% to 2.9% from T1 to T3. These findings confirm that COVID-19-related hospitalisation and ICU admission rates were decreasing throughout the pandemic from March 2020 to May 2021. Black patients had significantly higher (compared to White patients) hospitalisation rates (19.6% vs. 11.0%) and ICU admission rates (6.3% vs. 2.8%) in the full COVID-19-positive cohort. A time-stratified analysis showed that racial disparities in hospitalisation rates persisted over time and the estimates of the odds ratios (ORs) stayed above unity in both unadjusted [full cohort: OR = 1.98, 95% confidence interval (CI) (1.79, 2.19); T1: OR = 1.70, 95% CI (1.36, 2.12); T2: OR = 1.40, 95% CI (1.17, 1.68); T3: OR = 1.55, 95% CI (1.29, 1.86)] and adjusted analysis, accounting for differences in demographics, socioeconomic status, and preexisting comorbid conditions (full cohort: OR = 1.45, 95% CI (1.25, 1.68); T1: OR = 1.26, 95% CI (0.90, 1.76); T2: OR = 1.29, 95% CI (1.01, 1.64); T3: OR = 1.29, 95% CI (1.00, 1.67)).
The late Palaeozoic Yong’an–Meizhou depression belt is an important iron (Fe) and polymetallic metallogenic belt in southern China. It has undergone a transformation from Tethys to the circum-Pacific tectonic domain. The Luoyang deposit is one of the typical Fe skarn deposits in the Yong’an–Meizhou depression belt of eastern China. Garnet is a characteristic mineral in the deposit. Two generations of garnets are detected in the deposit based on their textural characteristics and trace-element contents, and are represented by Fe-enriched andradite. The first generation of garnets (Grt1) have two types of garnets (Grt1-A and Grt1-B). Type A garnets of the first generation (Grt1-A) (Adr80-88) replaced by massive diopside-magnetite assemblage exhibit distinct oscillatory zonings and display patterns of enriched light rare earth elements (LREE) to weak heavy rare earth elements (HREE), with weak negative to positive Eu anomalies, and highest U, ΣREE and Sn contents. Type B garnets of the first generation (Grt1-B) are irregular zones (Adr94-96) coexisting with magnetite, in which Grt1-A is generally dissolved, and have obviously LREE-enriched and HREE-depleted patterns, with weak negative to positive Eu anomalies, and moderate U, ΣREE and Zn contents. Garnets of the second generation (Grt2) (Adr96-99) that replaced massive magnetite together with sphalerite show unzoned patterns, with a flat REE pattern and pronounced negative Eu anomalies as well as contents of lowest U and ΣREE, and highest W. The substitution of REEs in garnets occurs as [X2+]VIII –1[REE3+]VIII +1[Si4+]IV –1[Z3+]IV +1in an Al-enriched environment. Luoyang hydrothermal fluids shifted from reducing conditions with relatively high-U and -ΣREE characteristics to oxidizing conditions with relatively low-U and -ΣREE characteristics. The reduced siderophile elements and increased fO2 in fluid during Grt1-B formation caused magnetite mineralization and reduced Zn contents during Grt2 formation, causing the deposition of sphalerite. All garnets formed from magmatic fluid and were controlled by infiltrative metasomatism in an opened system.
To uncover the chewing mechanism of Cyrtotrachelus buqueti Guer, a mathematical model was created and a kinematic analysis of its rostrum mouthparts was conducted for, to our knowledge, the first time. To reduce noise and improve the quality of scanning electron micrographs of the weevil's mouthparts, nonlocal means and integral nonlocal means algorithms were proposed. Additionally, based on a comparison and analysis of five classical edge detection algorithms, a multiscale edge detection algorithm based on the B-spline wavelet was used to obtain the boundaries of structural features. The least squares method was used to analyze the data of the mouthparts to fit the mathematical model and fitted curves were obtained using Gaussian equations. The results show that curvature and concave–convex variations of the weevil's mouthparts can highlight fluctuations in friction effects when it chews bamboo shoots, which is helpful in preventing debris from bamboo shoots or other debris from sticking to the mouthpart surfaces. Moreover, this paper highlights the utility of micro-computed tomography (microCT) for three-dimensional (3D) reconstruction and a flowchart is suggested. The reconstructed slices were 9.0 μm thick and an accurate 3D rendered model was obtained from a series of microCT slices. Finally, a real model of the rostrum mouthparts was analyzed using finite-element analysis. The results provide a biological template for the design of a novel bionic drilling mechanism.
We carry out direct numerical simulations of turbulent Rayleigh–Bénard convection in a square box with rough conducting plates over the Rayleigh number range $10^7\leqslant Ra\leqslant 10^9$ and the Prandtl number range $0.01\leqslant Pr\leqslant 100$. In Zhang et al. (J. Fluid Mech., vol. 836, 2018, R2), it was reported that while the measured Nusselt number $Nu$ is enhanced at large roughness height $h$, the global heat transport is reduced at small $h$. The division between the two regimes yields a critical roughness height $h_c$, and we now focus on the effects of the Prandtl number ($Pr$) on $h_c$. Based on the variations of $h_c$, we identify three regimes for $h_c(Pr)$. For low $Pr$, thermal boundary layers become thinner with increasing $Pr$. This makes the boundary layers easier to be disrupted by rough elements, leading to the decrease of $h_c$ with increasing $Pr$. For moderate $Pr$, the corner-flow rolls become much more pronounced and suppress the global heat transport via the competition between the corner-flow rolls and the large-scale circulation (LSC). As a consequence, $h_c$ increases with increasing $Pr$ due to the intensification of the corner–LSC competition. For high $Pr$, the convective flow transitions to the plume-controlled regime. As the rough elements trigger much stronger and more frequent plume emissions, $h_c$ again decreases with increasing $Pr$.
Folate status for women during early pregnancy has been investigated, but data for women during mid-pregnancy, late pregnancy or lactation are sparse or lacking. Between May and July 2014, we conducted a cross-sectional study in 1211 pregnant and lactating women from three representative regions in China. Approximately 135 women were enrolled in each stratum by physiological periods (mid-pregnancy, late pregnancy or lactation) and regions (south, central or north). Plasma folate concentrations were measured by microbiological assay. The adjusted medians of folate concentration decreased from 28·8 (interquartile range (IQR) 19·9, 38·2) nmol/l in mid-pregnancy to 18·6 (IQR 13·2, 26·4) nmol/l in late pregnancy, and to 17·0 (IQR 12·3, 22·5) nmol/l in lactation (Pfor trend < 0·001). Overall, lower folate concentrations were more likely to be observed in women residing in the northern region, with younger age, higher pre-pregnancy BMI, lower education or multiparity, and in lactating women who had undergone a Caesarean delivery or who were breastfeeding exclusively. In total, 380 (31·4 %) women had a suboptimal folate status (folate concentration <13·5 nmol/l). Women in late pregnancy and lactating, residing in the northern region, having multiparity and low education level had a higher risk of suboptimal folate status, while those with older age had a lower risk. In conclusion, maternal plasma folate concentrations decreased as pregnancy progressed, and were influenced by geographic region and maternal socio-demographic characteristics. Future studies are warranted to assess the necessity of folic acid supplementation during later pregnancy and lactation especially for women at a higher risk of folate depletion.
In this paper, the generation of relativistic electron mirrors (REMs) and the reflection of an ultra-short laser off this mirrors are discussed, applying two-dimensional particle-in-cell (2D-PIC) simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapidly expanding. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads the resonance between laser and REM. The reflected radiation near this interval and the corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, certain part of the reflected field could be selectively amplified or depressed, leading to the selectively adjusting of the corresponding spectra.
Eurasian steppes experienced frequent cultural transfers, human migration, and diffusion of techniques during the Bronze Age. The Hami Oasis is one of the most dynamic areas and has attracted multiple cultural flows. It is an important area that connects various routes of the Tianshan Corridor with the Hexi Corridor in western China. The Tianshanbeilu cemetery is the largest Bronze Age cemetery in Hami. Thirty-seven new radiocarbon dates allowed us to establish a new and more accurate chronology for Tianshanbeilu. Our results showed that the Tianshanbeilu cemetery was used from approximately 2022–1802 cal BC and remained in use from 1093–707 cal BC. This indicates that Tianshanbeilu is the earliest and longest-used known cemetery in eastern Xinjiang. By incorporating the typology of artifacts and stratigraphic relationships, the development of the Tianshanbeilu cemetery was divided into four phases. The first phase was from 2011–1672 cal BC, the second phase was from 1660–1408 cal BC, the third phase was from 1385–1256 cal BC, and the fourth phase was from 1214–1029 cal BC.
TLR3 and IL-10 play a crucial role in antiviral defence. However, there is a controversy between TLR3 rs3775291 and IL-10 rs1800871 polymorphisms and the risk of hepatitis B virus (HBV) infection. The purpose of this study is to explore the relationship between the two single nucleotide mutations and the risk of HBV infection by meta-analysis. Medline, EMBASE, Web of Science, CNKI, China Wanfang database were searched for the case-control studies on the relationship between TLR3 rs3775291 and IL-10 rs1800871 polymorphism and susceptibility to HBV, updated to June 2020. The data were analysed by Stata 15.0 software. A total of 22 articles were included. The results showed that in the analysis of IL10 rs1800871 polymorphism and the risk of HBV infection, the pooled OR was 1.21 (95% CI 1.06–1.37), 1.28 (95% CI 1.04–1.56) and 1.20 (95% CI 1.06–1.37) and 1.40 (95% CI 1.07–1.83) in the allele model (C vs. T), dominant model (CC+CT vs. TT), recessive model (CC vs. CT+TT) and homozygous model (CC vs. TT), respectively. There was no statistical significance in the heterozygote model. A subgroup analysis of the Asian population showed similar results. The analysis of TLR3 rs3775291 polymorphism and the risk of HBV showed that in the allele model (T vs. C), the pooled OR was 1.30 (95% CI 1.05–1.61). Except for the recessive model, no significances were found in other genetic models. In conclusion, TLR3 rs3775291 and IL-10 rs1800871 polymorphisms are associated with the risk of HBV. Allele C and genotype CC at IL10 rs1800871 loci, as well as allele T and genotype TT at TLR rs3775291 loci, may increase susceptibility to Hepatitis B infection.