We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study was performed to improve production efficiency at the level of recipient pig and donor nuclei of transgenic cloned pigs used for xenotransplantation. To generate transgenic pigs, human endothelial protein C receptor (hEPCR) and human thrombomodulin (hTM) genes were introduced using the F2A expression vector into GalT–/–/hCD55+ porcine neonatal ear fibroblasts used as donor cells and cloned embryos were transferred to the sows and gilts. Cloned fetal kidney cells were also used as donor cells for recloning to increase production efficiency. Pregnancy and parturition rates after embryo transfer and preimplantation developmental competence were compared between cloned embryos derived from adult and fetal cells. Significantly higher parturition rates were shown in the group of sows (50.0 vs. 4.1%), natural oestrus (20.8 vs. 0%), and ovulated ovary (16.7 vs. 5.6%) compared with gilt, induced and non-ovulated, respectively (P < 0.05). When using gilts as recipients, final parturitions occurred in only the fetal cell groups and significantly higher blastocyst rates (15.1% vs. 21.3%) were seen (P < 0.05). Additionally, gene expression levels related to pluripotency were significantly higher in the fetal cell group (P < 0.05). In conclusion, sows can be recommended as recipients due to their higher efficiency in the generation of transgenic cloned pigs and cloned fetal cells also can be recommended as donor cells through correct nuclear reprogramming.
Refugees commonly experience difficulties with emotional processing, such as alexithymia, due to stressful or traumatic experiences. However, the functional connectivity of the amygdala, which is central to emotional processing, has yet to be assessed in refugees. Thus, the present study investigated the resting-state functional connectivity of the amygdala and its association with emotional processing in North Korean (NK) refugees.
Methods
This study included 45 NK refugees and 40 native South Koreans (SK). All participants were administered the Toronto Alexithymia Scale (TAS), Beck Depression Inventory (BDI), and Clinician-administered PTSD Scale (CAPS), and differences between NK refugees and native SK in terms of resting-state functional connectivity of the amygdala were assessed. Additionally, the association between the strength of amygdala connectivity and the TAS score was examined.
Results
Resting-state connectivity values from the left amygdala to the bilateral dorsolateral prefrontal cortex (dlPFC) and dorsal anterior cingulate cortex (dACC) were higher in NK refugees than in native SK. Additionally, the strength of connectivity between the left amygdala and right dlPFC was positively associated with TAS score after controlling for the number of traumatic experiences and BDI and CAPS scores.
Conclusions
The present study found that NK refugees exhibited heightened frontal–amygdala connectivity, and that this connectivity was correlated with alexithymia. The present results suggest that increased frontal–amygdala connectivity in refugees may represent frontal down-regulation of the amygdala, which in turn may produce alexithymia.
Polycyclic aromatic hydrocarbons (PAH) are common dietary exposures that cross the human placenta and are classified as a probable human carcinogen. The aim of the present study was to investigate the potential impact of exposure to PAH-containing meat consumed during pregnancy on birth outcomes.
Design
Prospective birth cohort study. Only non-smoking women with singleton pregnancies, who were free from chronic disease such as diabetes and hypertension, were included in the study. Maternal consumption of PAH-rich meat was estimated through FFQ. Multiple linear regression was used to assess factors related to higher intake and the association between dietary PAH and birth outcomes.
Setting
Republic of Korea, 2006–2011.
Subjects
Pregnant women (n 778) at 12–28 weeks of gestation enrolled in the Mothers and Children’s Environmental Health (MOCEH) study.
Results
The multivariable regression model showed a significant reduction in birth weight associated with higher consumption level of foods rich in PAH, such as grilled or roasted meat, during pregnancy (β=−17·48 g, P<0·05 for every 1 point higher in meat score). Further adjusting for biomarkers of airborne PAH did not alter this association. There was no evidence that higher consumption level of PAH-rich meat shortens the duration of gestation (P=0·561). Regression models performed for birth length and head circumference produced negative effects that were not statistically significant.
Conclusions
Consumption of higher levels of barbecued, fried, roasted and smoked meats during pregnancy was associated with reduced birth weight. Dietary risk of PAH exposure in Korean women is of concern.
Postural instability is one of the most disabling features of Parkinson's disease, usually occurring in late and advanced stages. The aim of this study was to investigate the postural performance of early-stage de novo Parkinson's disease patients with no clinical postural instability using computerized dynamic posturography. We sought to understand the relationship between postural sway and disease severity and the relationship between postural instability quantitatively measured by computerized dynamic posturography and cognitive impairment in early-stage Parkinson's disease patients.
Method:
Thirty-one subjects with Parkinson's disease and 20 healthy controls were assessed by the computerized dynamic posturography protocol using the sensory organization test and the motor control test. A neuropsychological assessment was also administered.
Results:
The mean equilibrium score for sensory organization test and the vestibular input ratio were significantly correlated with Hoehn-Yahr stage. No associations between motor latency for any motor control test condition and Hoehn-Yahr stage were found. The equilibrium score for sensory organization test correlated with the mini-mental status examination scores. There was a significant correlation between motor latency for large backward translation and mini-mental status examination scores. There were significant correlations between visual perception/construction/ memory of the neuropsychological battery test and the equilibrium score for sensory organization test and between verbal word learning test, controlled word association test and motor latency for large backward translation.
Conclusion:
These findings showed the postural instability present in early-stage (Hoehn-Yahr stage 2-2.5) Parkinson's disease. We also found a close relationship between postural instability and cognitive function in Parkinson's disease patients.
The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.
This study examined changes in health-related quality of life (HRQoL) and quality of care (QoC) as perceived by terminally ill cancer patients and a stratified set of HRQoL or QoC factors that are most likely to influence survival at the end of life (EoL).
Method:
We administered questionnaires to 619 consecutive patients immediately after they were diagnosed with terminal cancer by physicians at 11 university hospitals and at the National Cancer Center in Korea. Subjects were followed up over 161.2 person-years until their deaths. We measured HRQoL using the core 30-item European Organization for Research and Treatment of Cancer Quality of Life Questionnaire, and QoC using the Quality Care Questionnaire–End of Life (QCQ–EoL). We evaluated changes in HRQoL and QoC issues during the first three months after enrollment, performing sensitivity analysis by using data generated via four methods (complete case analysis, available case analysis, the last observation carried forward, and multiple imputation).
Results:
Emotional and cognitive functioning decreased significantly over time, while dyspnea, constipation, and pain increased significantly. Dignity-conserving care, care by healthcare professionals, family relationships, and QCQ–EoL total score decreased significantly. Global QoL, appetite loss, and Eastern Cooperative Oncology Group Performance Status (ECOG–PS) scores were significantly associated with survival.
Significance of results:
Future standardization of palliative care should be focused on assessment of these deteriorated types of quality. Accurate estimates of the length of life remaining for terminally ill cancer patients by such EoL-enhancing factors as global QoL, appetite loss, and ECOG–PS are needed to help patients experience a dignified and comfortable death.
In this study, the transcriptome of Vitis flexuosa leaves inoculated with Elsinoe ampelina was analysed to identify useful genes and elucidate their function and differential expression patterns through assembly and annotation gene ontology of data from sequencing short reads on the Illumina platform. We assembled ~121 million high-quality trimmed reads using Velvet and Oases with optimal parameters into a non-redundant set of 70,899 transcripts ( ≥ 200 bp in length). The transcripts exhibited an average length of 1138 bp and a N50 length of 1695 bp, with the largest contig length being 9623 bp. Functional categorization revealed the conservation of genes involved in various molecular functions, including protein binding (21.1%) and oxidoreductase activity (11.7%), in V. flexuosa. The V. flexuosa transcript set generated in this study will serve as a resource for gene discovery and development of functional molecular markers.
Human impulsivity is a complex multidimensional construct encompassing cognitive, emotional, and behavioural aspects. Previous animal studies have suggested that striatal dopamine receptors play a critical role in impulsivity. In this study, we investigated the relationship between self-reported impulsiveness and dopamine D2/3 receptor availability in striatal subdivisions in healthy subjects using high-resolution positron emission tomography (PET) with [11C]raclopride.
Methods
Twenty-one participants completed 3-T magnetic resonance imaging and high-resolution PET scans with [11C]raclopride. The trait of impulsiveness was measured using the Barratt Impulsiveness Scale (BIS-11). Partial correlation analysis was performed between BIS-11 scores and D2/3 receptor availability in striatal subregions, controlling for the confounding effects of temperament characteristics that are conceptually or empirically related to dopamine, which were measured by the Temperament and Character Inventory.
Results
The analysis revealed that the non-planning (p = 0.004) and attentional (p = 0.007) impulsiveness subscale scores on the BIS-11 had significant positive correlations with D2/3 receptor availability in the pre-commissural dorsal caudate. There was a tendency towards positive correlation between non-planning impulsiveness score and D2/3 receptor availability in the post-commissural caudate.
Conclusion
These results suggest that cognitive subtrait of impulsivity is associated with D2/3 receptor availability in the associative striatum that plays a critical role in cognitive processes involving attention to detail, judgement of alternative outcomes, and inhibitory control.
To compare the characteristics and risk factors for surgical site infections (SSIs) after total hip arthroplasty (THA) and total knee arthroplasty (TKA) in a nationwide survey, using shared case detection and recording systems.
Design.
Retrospective cohort study.
Setting.
Twenty-six hospitals participating in the Korean Nosocomial Infections Surveillance System (KONIS).
Patients.
From 2006 to 2009, all patients undergoing THA and TKA in KONIS were enrolled.
Results.
SSI occurred in 161 (2.35%) of 6,848 cases (3,422 THAs and 3,426 TKAs). Pooled mean SSI rates were 1.69% and 2.82% for THA and TKA, respectively. Of the cases we examined, 42 (26%) were superficial-incisional SSIs and 119 (74%) were “severe” SSIs; of the latter, 24 (15%) were deep-incisional SSIs and 95 (59%) were organ/space SSIs. In multivariate analysis, a duration of preoperative hospital stay of greater than 3 days was a risk factor for total SSI after both THA and TKA. Diabetes mellitus, revision surgery, prolonged duration of surgery (above the 75th percentile), and the need for surgery due to trauma were independent risk factors for total and severe SSI after THA, while male sex and an operating room without artificial ventilation were independent risk factors for total and severe SSI after TKA. A large volume of surgeries (more than 10 procedures per month) protected against total and severe SSI, but only in patients who underwent TKA.
Conclusions.
Risk factors for SSI after arthroplasty differ according to the site of the arthroplasty. Therefore, clinicians should take into account the site of arthroplasty in the analysis of SSI and the development of strategies for reducing SSI.
To evaluate the risk factors for surgical site infection (SSI) after gastric surgery in patients in Korea.
Design.
A nationwide prospective multicenter study.
Setting.
Twenty university-affiliated hospitals in Korea.
Methods.
The Korean Nosocomial Infections Surveillance System (KONIS), a Web-based system, was developed. Patients in 20 Korean hospitals from 2007 to 2009 were prospectively monitored for SSI for up to 30 days after gastric surgery. Demographic data, hospital characteristics, and potential perioperative risk factors were collected and analyzed, using multivariate logistic regression models.
Results.
Of the 4,238 case patients monitored, 64.9% (2,752) were male, and mean age (±SD) was 58.8 (±12.3) years. The SSI rates were 2.92, 6.45, and 10.87 per 100 operations for the National Nosocomial Infections Surveillance system risk index categories of 0, 1, and 2 or 3, respectively. The majority (69.4%) of the SSIs observed were organ or space SSIs. The most frequently isolated microorganisms were Staphylococcus aureus and Klebsiella pneumoniae. Male sex (odds ratio [OR], 1.67 [95% confidence interval (CI), 1.09–2.58]), increased operation time (1.20 [1.07–1.34] per 1-hour increase), reoperation (7.27 [3.68–14.38]), combined multiple procedures (1.79 [1.13–2.83]), prophylactic administration of the first antibiotic dose after skin incision (3.00 [1.09–8.23]), and prolonged duration (≥7 days) of surgical antibiotic prophylaxis (SAP; 2.70 [1.26–5.64]) were independently associated with increased risk of SSI.
Conclusions.
Male sex, inappropriate SAP, and operation-related variables are independent risk factors for SSI after gastric surgery.
‘Healthy Twin’ is a twin family study extension of the existing Korean Twin-Family Register. Healthy Twin recruits adult like-sex twins over the age of 30 and their adult family members. Healthy Twin protocols are primarily tailored to the study of the quantitative trait loci of complex traits as well as to the role of environment in the etiology of complex diseases. A full-length survey is underway, including questionnaires, health examinations and the collection of biological specimens. So far, 820 individuals (169 twin pairs and their families) have participated in the survey and 1068 individual twins (608 twin pairs) have replied to the mailed zygosity questionnaire as of July 2006. The first phase (2005–2006) of Healthy Twin will recruit 1550 individuals (including about 380 twin pairs), and the second phase a proposed 1500 to 2500 additional participants. We report study protocols and zygosity and the distribution of family size of the study participants.
We report the microstructures and dielectric properties of Ca1-xSrxCu3Ti4O12 (C1-xSxCTO, 0≤x≤1) ceramics sintered at the various sintering temperatures ranging from 1000 to 1060˚C in air. The linear increase in lattice parameter in C1-xSxCTO (0≤x≤1) ceramics is observable for the full range of substitution. However, the second phases of SrTiO3 and CuO start to occur from the composition of x=0.8, implying that a stoichiometric SrCu3Ti4O12 (SCTO) compound may not exist. While the C0.6S0.4CTO and C0.4S0.6CTiO samples exhibit relatively lower dielectric constant (εr) of ∼40,000 below 1 kHz, the CaCu3Ti4O12 (CCTO) and SCTO show the extremely high εr values of ~120,000 and ∼180,000, respectively. Complex impedance (Z*) and modulus (M*) spectroscopy revealed that the capacitance (C) and resistivity (ρ) values of grain boundary in all samples are much higher than those of grains.
New necessary and sufficient conditions are established for Banach spaces to have the approximation property; these conditions are easier to check than the known ones. A shorter proof of a result of Grothendieck is presented, and some properties of a weak version of the approximation property are addressed.
A novel route to organic-inorganic composites was described based on biomineralization of poly(ethylene glycol) (PEG)-based hydrogels. The 3-dimensional hydrogels were synthesized by radical crosslinking polymerization of poly(ethylene glycol fumarate) (PEGF) in the presence of ethylene glycol methacrylate phosphate (EGMP) as an apatite-nuclating monomer, acrylamide (AAm) as a composition-modulating comonomer, and potassium persulfate (PPS) as a radical initiator. We used the urea-mediated solution precipitation technique for biomineralization of hydrogels. The apatite grown on the surface and interior of the hydrogel was similar to biological apatites in the composition and crystalline structure. Powder x-ray diffraction (XRD) showed that the calcium phosphate crystalline platelets on hydrogels are preferentially aligned along the crystallographic c-axis direction. Inductively-coupled plasma mass spectroscopy (ICP-MS) analysis showed that the Ca/P molar ratio of apatites grown on the hydrogel template was found to be 1.60, which is identical to that of natural bones. In vitro cell experiments showed that the cell adhesion/proliferation on the mineralized hydrogel was more pronounced than on the pure polymer hydrogel.
In this investigation, 22 cloned male piglets were obtained by male fetal fibroblast-cell-derived nuclear transfer. Eighteen of the cloned animals died. The two cell lines did not differ significantly with regard to efficiency of live piglet production. The gross anatomy of the testes of male piglets that died was normal. However, one piglet displayed Leydig cell hypoplasia (LCH). No anatomical defects were detected in the testes of other cloned male piglets. TUNEL analysis of the testis with LCH revealed significant apoptosis in the Leydig cells, while apoptosis was rarely detected in Sertoli cells and spermatogonia. In contrast, testes from the remaining 17 piglets that died appeared normal in size, and their Sertoli and Leydig cell numbers were comparable to those in control piglet testes. Although cloned piglets were derived from fibroblasts obtained from the same fetus, phenotypic instability between cells used for the production of somatic cell cloned piglets suggests that abnormalities in male cloned piglets are caused not by technical problems and/or reprogramming effects, but rather by epigenetically and/or genetically damaged cell-specific effects.
Tin oxide films were deposited on amorphous SiO2/Si and Si (100) substrates by ion-assisted deposition (IAD) at various ion beam potentials (VI) at room temperature and a working pressure of 8 × 10−5 torr. The structural and chemical properties of the as-grown tin oxide films were investigated to determine the effects of the oxygen ion/atom arrival ratio (Ri). X-ray diffraction patterns indicated that the as-grown films with different average energy per atom (Eave) showed different growth directions. The as-grown films with oxygen/Sn ratio (NO/NSn) of 2.03 and 2.02 had preferred orientation of (101) and (002), respectively. In addition, the as-grown film with low Ri was amorphous. Comparison of the observed d spacings with those for standard SnO2 samples, indicated that the crystalline as-grown films had compressive and tensile stress depending on Eave. In transmission electron microscopy analysis, a buffer layer of amorphous tin oxide was observed at the interface between the substrate and the film, and the crystalline grains were grown on this buffer layer. The crystalline grains were arranged in large spherical clusters, and this shape directly affected surface roughness. Rutherford backscattering spectroscopy spectra showed that the tin oxide thin films were inhomogeneous. The density of films decreased and the porosity and oxygen trapped in the films increased with increasing Ri. The densest film had about 6% porosity.
We have investigated the morphology of the NOS-like
immunoreactive neurons and their synaptic connectivity
in the rat retina by immunocytochemistry using antisera
against nitric oxide synthase (NOS). In the present study,
several types of amacrine cells were labeled with anti-NOS
antisera. Type 1 cells had large somata located in the
inner nuclear layer (INL) with long and sparsely branched
processes ramifying mainly in stratum 3 of the inner plexiform
layer (IPL). Somata of type 2 cells with smaller diameters
were also located in the INL. Their fine processes branched
mostly in stratum 3 of the IPL. A third population showing
NOS-like immunoreactivity was a class of displaced amacrine
cells in the ganglion cell layer (GCL). Their soma size
was similar to that of the type 1 cells; however, their
processes stratified mainly in strata 4 and 5 of the IPL.
Labeled neurons were evenly distributed throughout the
retina, and the mean densities were 57.0 ± 9.7 cells/mm2
for the type 1 cells, 239.3 ± 43.4 cells/mm2
for the type 2 cells and 121.2 ± 27.5 cells/mm2
cells for the displaced amacrine cells. The synaptic connectivity
of NOS-like immunoreactive amacrine cells was identified
in the IPL by electron microscopy. NOS-labeled amacrine
cell processes received synaptic input from other amacrine
cell processes and bipolar cell axon terminals in all strata
of the IPL. The most frequent postsynaptic targets of NOS-immunoreactive
amacrine cells were other amacrine cell processes. Ganglion
cell dendrites were also postsynaptic to NOS-like immunoreactive
neurons in both sublaminae of the IPL. Synaptic outputs
onto bipolar cells were observed in sublamina b
of the IPL. In addition, a few synaptic contacts between
labeled cell processes were observed. Our results suggest
that NOS immunoreactive cells may be modulated by other
amacrine cells and ON cone bipolar cells, and act preferentially
on other amacrine cells.
Ion irradiation with various oxygen flow rates has been carried out to improve the wettability of polymethylmethacrylate (PMMA) to water and to enhance the adhesion between Al and the polymer. Ar+ ion and oxygen ion were irradiated on the polymer, and amounts of ions were changed from 5 × 1014 Ar+/cm2 to 5 × 1016 Ar+/cm2 by a broad ion beam source. Oxygen gas from 0 ml/min to 7 ml/min was flowed near the polymer surface during the ion irradiation, and the energy of ions was changed from 500 eV to 1500 eV. The wetting angle was reduced from 68° to 49° with the Ar+ ion irradiation only at 1 keV energy, to 43° with the oxygen ion irradiation, and dropped to 8° with Ar+ ion irradiation with flowing 4 ml/min oxygen gas near the polymer surface. Changes of wetting angle with oxygen gas and Ar+ ion irradiation were explained by a two-step chemical reaction among polymer matrix, energetic ions, and oxygen gas. The effects of Ar+ ion and oxygen ion irradiation were explained by considering formation of hydrophilic groups due to a reaction between irradiated polymer chain by energetic ion irradiation and blown oxygen gas, and enhanced adhesion between Al and PMMA was explained by the formation of electron acceptor groups in polymer and electron donors in metal, and by the chemical reaction in the interface between irradiated polymer surface and deposited metal.
Changes of crystallinity and surface roughness are discussed in terms of the average energy per deposited atom in the partially ionized beam(PIB) deposition. The average energy per deposited atom can be controlled by adjusting the ionization potential, Vi and acceleration potential, Va. The ion beam consists of a Cu ion beam and residual gas ion beam and residual gases as well as Cu particles that were ionized and accelerated to provide the film with energy required for film-growth. The relative contribution of residual gas ions and Cu ions to total average energy per deposited atom was varied with the ionization potential. At fixed ionization potentials of Vi=400 V and Vi=450 V, the average energy per deposited atom was varied in the range of 0 to 120 eV with acceleration potential Va, of 0 to 4 kV. The relative intensity ratio, 1(111)/I(200), of the Cu films increased from 6 to 37 and the root mean square(Rms) surface roughness decreased with an increase in acceleration potential at Vi=400 V. The relative intensity ratio, I(lll)/I(200), of Cu films increased up to Va=2 kV at Vi=2 kV, above which a decrease occurred, and the surface roughness of Cu films increased as a funtion of acceleration potential. The degree of preferred orientation was closely related with the average energy per deposited atom. The change of Rms roughness might be affected by ion flux, particle energy and preferred orientation.
Partially ionized beam deposition of Cu thin films on glass at room temperature were carried out to fabricate Cu laser mirrors with good structural and reflectance properties. At a constant film thickness of 600 Å, the grain size of as-grown Cu films increased with acceleration voltage, and there was no indication of defects such as cracks and/or large pores in the film surface as shown in scanning electron microscopy images. Root-mean-square(Rms) surface roughnesses of the films with thicknesses of 600 Å were measured by atomic force microscopy. RmS surface roughness increased when acceleration voltage increased from 0 kV to 2 kV, but decreased at the acceleration voltage of 3 kV. RmS surface roughness of the film grown at 4 kV, however, increased again. At the acceleration voltage of 3 kV, reflectance of the films increased with the film thickness until 600 Å and decreased at the film thickness of 800 Å. The reflectance results showed that the Cu film deposited at 3 kV had higher reflectance than that of others. Our results suggest that it is possible to grow the Cu film with good structural and optical properties on glass substrate at room temperature by partially ionized beam deposition.