We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A liquid metal flow in the form of a submerged round jet entering a square duct in the presence of a transverse magnetic field is studied experimentally. A range of high Reynolds and Hartmann numbers is considered. Flow velocity is measured using electric potential difference probes. A detailed study of the flow in the duct's cross-section about seven jet's diameters downstream of the inlet reveals the dynamics, which is unsteady and dominated by high-amplitude fluctuations resulting from the instability of the jet. The flow structure and fluctuation properties are largely determined by the value of the Stuart number ${{N}}$. At moderate ${{N}}$, the mean velocity profile retains a central jet with three-dimensional perturbations increasingly suppressed by the magnetic field as ${{N}}$ grows. At higher values of ${{N}}$, the flow becomes quasi-two-dimensional and acquires the form of an asymmetric macrovortex, with high-amplitude velocity fluctuations reemerging.
Linear stability analysis and direct numerical simulations are conducted to analyse mixed convection in a liquid metal flow in a horizontal pipe with imposed transverse magnetic field. The pipe walls are electrically insulated and subject to constant flux heating in the lower half. The results reveal the nature of anomalous temperature fluctuations detected in earlier experiments. It is found that, at the magnetic field strength far exceeding the laminarization threshold, the natural convection develops in the form of coherent quasi-two-dimensional rolls aligned with the magnetic field. Transport of the rolls by the mean flow causes high-amplitude, low-frequency fluctuations of temperature.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.