We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The impact of a chemical reaction, $A+B \rightarrow C$, on the stability of a miscible radial displacement in a porous medium is established. Our study involves a comprehensive analysis employing both linear stability analysis and nonlinear simulations. Through linear stability analysis, the onset of instability for monotonic as well as non-monotonic viscosity profiles corresponding to the same end-point viscosity are discussed and compared. We establish a $(R_b,R_c)$ phase plane for a wide range of Damköhler number ($Da$) and Péclet number ($Pe$) into stable and unstable regions. Here, $R_b=\ln (\mu _B/ \mu _A)$ and $R_c=\ln (\mu _C/ \mu _A)$ and $\mu _{i}$ is the viscosity of fluid $i$$\in \{A$, $B$, $C$}. The stable zone in the $(R_b, R_c)$ phase plane contracts with increased $Da$ and $Pe$ but never vanishes. It exists even for $Da \rightarrow \infty$. Interestingly, we obtain a $Da$ independent stable region in the neighbourhood of $R_c=R_b$ where no transition occurs in stability despite changes in reaction rate. The study allows us to acquire knowledge about the transition of the stability for varying $Da, Pe$ and different reactions classified using $R_b, R_c$.
Introduction: Late-life depression (LLD) is associated with cognitive deficit with risk of future dementia. By examining the entropy of the spontaneous brain activity, we aimed to understand the neural mechanism pertaining to cognitive decline in LLD.
Methods: We collected MRI scans in older adults with LLD (n = 32), mild cognitive impairment [MCI (n = 25)] and normal cognitive function [NC, (n = 47)]. Multiscale entropy analysis (MSE) was applied to resting-state fMRI data. Under the scale factor (tau) 1 and 2, reliable separation of fMRI data and noise was achieved. We calculated the brain entropy in 90 brain regions based on automated anatomical atlas (AAL). Due to exploratory nature of this study, we presented data of group-wise comparison in brain entropy between LLD vs. NC, MCI vs. NC, and LLD and MCD with a p-value below 0.001.
Results: The mean Mini-Mental State Examination (MMSE) score of LLD and MCI was 27.9 and 25.6. Under tau 2, we found higher brain entropy of LLD in left globus pallidus than MCI (p = 0.002) and NC (p = 0,009). Higher brain entropy of LLD than NC was also found in left frontal superior gyrus, left middle superior gyrus, left amygdala and left inferior parietal gyrus. The only brain region with higher brain entropy in MCI than control was left posterior cingulum (p-value = 0.015). Under tau 1, higher brain entropy was also found in LLD than in MCI in right orbital part of medial frontal gyrus and left globus pallidus (p-value = 0.007 and 0.005).
Conclusions: Our result is consistent with prior hypothesis where higher brain entropy was found during early aging process as compensation. We found such phenomenon particular in left globus pallidus in LLD, which could be served as a discriminative brain region. Being a key region in reward system, we hypothesis such region may be associated with apathy and with unique pathway of cognitive decline in LLD. We will undertake subsequent analysis longitudinally in this cohort
The high-power narrow-linewidth fiber laser has become the most widely used high-power laser source nowadays. Further breakthroughs of the output power depend on comprehensive optimization of stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS) and transverse mode instability (TMI). In this work, we aim to further surpass the power record of all-fiberized and narrow-linewidth fiber amplifiers with near-diffraction-limited (NDL) beam quality. SBS is suppressed by white-noise-signal modulation of a single-frequency seed. In particular, the refractive index of the large-mode-area active fiber in the main amplifier is controlled and fabricated, which could simultaneously increase the effective mode field area of the fundamental mode and the loss coefficient of higher-order modes for balancing SRS and TMI. Subsequent experimental measurements demonstrate a 7.03 kW narrow-linewidth fiber laser with a signal-to-noise ratio of 31.4 dB and beam quality factors of Mx2 = 1.26, My2 = 1.25. To the best of our knowledge, this is the highest reported power with NDL beam quality based on a directly laser-diode-pumped and all-fiberized format, especially with narrow-linewidth spectral emission.
Human alveolar echinococcosis is a hard-to-treat and largely untreated parasitic disease with high associated health care costs. The current antiparasitic treatment for alveolar echinococcosis relies exclusively on albendazole, which does not act parasiticidally and can induce severe adverse effects. Alternative, and most importantly, improved treatment options are urgently required. A drug repurposing strategy identified the approved antimalarial pyronaridine as a promising candidate against Echinococcus multilocularis infections. Following a 30-day oral regimen (80 mg kg−1 day−1), pyronaridine achieved an excellent therapeutic outcome in a clinically relevant hepatic alveolar echinococcosis murine model, showing a significant reduction in both metacestode size (72.0%) and counts (85.2%) compared to unmedicated infected mice, which revealed significantly more potent anti-echinococcal potency than albendazole treatment at an equal dose (metacestode size: 42.3%; counts: 4.1%). The strong parasiticidal activity of pyronaridine was further confirmed by the destructive damage to metacestode tissues observed morphologically. In addition, a screening campaign combined with computational similarity searching against an approved drug library led to the identification of pirenzepine, a gastric acid-inhibiting drug, exhibiting potent parasiticidal activity against protoscoleces and in vitro cultured small cysts, which warranted further in vivo investigation as a promising anti-echinococcal lead compound. Pyronaridine has a known drug profile and a long track record of safety, and its repurposing could translate rapidly to clinical use for human patients with alveolar echinococcosis as an alternative or salvage treatment.
Purple nutsedge (Cyperus rotundus L.) is one of the world’s resilient upland weeds, primarily spreading through its tubers. Its emergence in rice fields has been increasing, likely due to changing paddy farming practices. This study aimed to investigate how C. rotundus, an upland weed, can withstand soil flooding and become a problematic weed in rice (Oryza sativa L.) fields. The first comparative analysis focused on the survival and recovery characteristics of growing and mature tubers of C. rotundus exposed to soil flooding conditions. Notably, mature tubers exhibited significant survival and recovery abilities in these environments. Based on this observation, further investigation was carried out to explore the morphological structure, non-structural carbohydrates, and respiratory mechanisms of mature tubers in response to prolonged soil flooding. Over time, the mature tubers did not form aerenchyma but instead gradually accumulated lignified sclerenchyma fibers, with lignin content also increasing. After 90 days, the lignified sclerenchyma fibers and lignin contents were 4.0 and 1.1 times higher than those in no soil flooding (CK). Concurrently, soluble sugar content decreased while starch content increased, providing energy storage, and alcohol dehydrogenase (ADH) activity rose to support anaerobic respiration via alcohol fermentation. These results indicated that mature tubers survived in soil flooding conditions by adopting a “low-oxygen quiescence strategy”, which involves morphological adaptations through the development of lignified sclerenchyma fibers, increased starch reserves for energy storage, and enhanced anaerobic respiration. This mechanism likely underpins the flooding tolerance of mature C. rotundus tubers, allowing them to endure unfavorable conditions and subsequently germinate and grow once flooding subsides. This study provides a preliminary explanation of the mechanism by which mature tubers of C. rotundus from the upland areas confer flooding tolerance, shedding light on the reasons behind this weed’s increasing presence in rice fields.
Adolescence is a period marked by highest vulnerability to the onset of depression, with profound implications for adult health. Neuroimaging studies have revealed considerable atrophy in brain structure in these patients with depression. Of particular importance are regions responsible for cognitive control, reward, and self-referential processing. However, the causal structural networks underpinning brain region atrophies in adolescents with depression remain unclear.
Objectives
This study aimed to investigate the temporal course and causal relationships of gray matter atrophy within the brains of adolescents with depression.
Methods
We analyzed T1-weighted structural images using voxel-based morphometry in first-episode adolescent patients with depression (n=80, 22 males; age = 15.57±1.78) and age, gender matched healthy controls (n=82, 25 males; age = 16.11±2.76) to identify the disease stage-specific gray matter abnormalities. Then, with granger causality analysis, we arranged the patients’ illness duration chronologically to construct the causal structural covariance networks that investigated the causal relationships of those atypical structures.
Results
Compared to controls, smaller volumes in ventral medial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), middle cingulate cortex (MCC) and insula areas were identified in patients with less than 1 year illness duration, and further progressed to the subgenual ACC, regions of default, frontoparietal networks in longer duration. Causal network results revealed that dACC, vmPFC, MCC and insula were prominent nodes projecting exerted positive causal effects to regions of the default mode and frontoparietal networks. The dACC, vmPFC and insula also had positive projections to the reward network, which included mainly the thalamus, caudate and putamen, while MCC also exerted a positive causal effect on the insula and thalamus.
Conclusions
These findings revealed the progression of structural atrophy in adolescent patients with depression and demonstrated the causal relationships between regions involving cognitive control, reward and self-referential processes.
Understanding settling motion of coral grains is important in terms of protection of coral reef systems and resotoration of the associated ecosystems. In this paper, a series of laboratory experiments was conducted to investigate the settling motion, using optical microscopy to measure shape parameters of coral grains and the particle-filtering-based object tracking to reconstruct the three-dimensional trajectory. Three characteristic descent regimes, namely, tumbling, chaotic and fluttering, are classified based on the three-dimensional trajectory, the spiral radius variation and the velocity spectrum. It is demonstrated that if one randomly picks up one coral grain, then the probabilities of occurrence of the three regimes are approximately $26\,\%$, $42\,\%$ and $32\,\%$, respectively. We have shown that first, the dimensionless settling velocity generally increases with the non-dimensional diameter and Corey shape factor and second, the drag coefficient generally decreases with the Reynolds number and Corey shape factor. Based on this, the applicability of existing models on predicting settling velocity and drag coefficient for coral grains is demonstrated further. Finally, we have proposed extended models for predicting the settling velocity. This study contributes to better understanding of settling motion and improves our predictive capacity of settling velocity for coral grains with complex geometry.
Tree-ring cellulose is a commonly used material for radiocarbon analysis. Extracting cellulose is labor-consuming and several devices that enable batchwise extraction have been developed. However, these devices bear the risk of sample contamination. The present study describes a new device which improves upon two aspects of currently available devices. First, to prevent cross-sample-contamination, we redesigned the drainage module to enable independent removal of chemical waste from each individual sample funnel. Second, we added covers to the sample funnels to reduce the risk of external contamination. Cellulose purity (i.e., holocellulose) was confirmed by Fourier Transform Infrared (FTIR) Spectroscopy. Furthermore, accuracy of the radiocarbon analysis was confirmed by results of 14C-blank samples and samples of known age. In conclusion, while maintaining labor-saving, our modified device significantly reduces the risk of sample contamination during extraction of tree-ring cellulose.
Intracytoplasmic sperm injection (ICSI) is a technique that directly injects a single sperm into the cytoplasm of mature oocytes. Here, we explored the safety of single-sperm cryopreservation applied in ICSI. This retrospective study enrolled 186 couples undergoing ICSI-assisted pregnancy. Subjects were allocated to the fresh sperm (group A)/single-sperm cryopreservation (group B) groups based on sperm type, with their clinical baseline/pathological data documented. We used ICSI-compliant sperm for subsequent in vitro fertilization and followed up on all subjects. The recovery rate/cryosurvival rate/sperm motility of both groups, the pregnancy/outcome of women receiving embryo transfer, and the delivery mode/neonatal-related information of women with successful deliveries were recorded. The clinical pregnancy rate, cumulative clinical pregnancy rate, abortion rate, ectopic pregnancy rate, premature delivery rate, live birth delivery rate, neonatal birth defect rate, and average birth weight were analyzed. The two groups showed no significant differences in age, body mass index, ovulation induction regimen, sex hormone [anti-Müllerian hormone (AMH)/follicle-stimulating hormone (FSH)/luteinizing hormone (LH)] levels, or oocyte retrieval cycles. The sperm recovery rate (51.72%-100.00%) and resuscitation rate (62.09% ± 16.67%) in group B were higher; the sperm motility in the two groups demonstrated no significant difference and met the ICSI requirements. Group B exhibited an increased fertilization rate, decreased abortion rate, and increased safety versus group A. Compared with fresh sperm, the application of single-sperm cryopreservation in ICSI sensibly improved the fertilization rate and reduced the abortion rate, showing higher safety.
The integration of camera and LiDAR technologies has the potential to significantly enhance construction robots’ perception capabilities by providing complementary construction information. Structured light cameras (SLCs) are a desirable alternative as they provide comprehensive information on construction defects. However, fusing these two types of information depends largely on the sensors’ relative positions, which can only be established through extrinsic calibration. This paper introduces a novel calibration algorithm considering a customized board for SLCs and repetitive LiDARs, which are designed to facilitate the automation of construction robots. The calibration board is equipped with four symmetrically distributed hemispheres, whose centers are obtained by fitting the spheres and adoption with the geometric constraints. Subsequently, the spherical centers serve as reference features to estimate the relationship between the sensors. These distinctive features enable our proposed method to only require one calibration board pose and minimize human intervention. We conducted both simulation and real-world experiments to assess the performance of our algorithm. And the results demonstrate that our method exhibits enhanced accuracy and robustness.
In this paper, we consider the problem of contact parameters (slippage and sinkage) estimation for multi-modal robot locomotion on granular terrains. To describe the contact events in the same framework for robots operated at different modes (e.g., wheel, leg), we propose a unified description of contact parameters for multi-modal robots. We also provide a parameter estimation method for multi-modal robots based on CNN and DWT (discrete wavelet transformation) techniques and verify its effectiveness over different types of granular terrains. Besides motion modes, this paper also considers the influence of slope angles and the robot’s handing angles over contact parameters. Through comparison and analysis of the prediction results, our method can not only effectively predict the contact parameters of multi-modal robot locomotion on a granular medium (better than $96\%$ accuracy) but also achieves the same or better performance when compared to other (direct) contact measurement methods designed for individual motion modes, that is, single-modal robots such as quadruped robots and mars rovers. Our proposed unified contact parameter estimation method can be useful for studying the interaction mechanics between multi-modal robots and granular terrains as well as terrain classification tasks due to its superior sensitivity which is analyzed in the experiments.
Supercritical carbon dioxide (scCO2) processing has been proven as a method for preparing polymer/montmorillonite (MMT) nanocomposites with improved platelet dispersion. The influence of scCO2 processing on the shape and size of the MMT tactoid/platelet, which is of great importance to the final platelet dispersion in the polymer matrix, is scarcely reported in the literature. In the present study, the pristine MMT was first surface modified with 3-glycidoxypropyltrimethoxysilane (the grafted MMT is labeled as GMMT), and then intercalated using three kinds of intercalating agents, myristyltrimethyl-ammonium bromide (MTAB), tetradecyltrihexylphosphonium chloride (TDTHP), and ethoxyltriphenyl-phosphonium chloride (ETPC), in water or scCO2, to study the effect of intercalating agent type and intercalation method on the morphology and thermal properties of GMMT, as a part of a program devoted to the synthesis of polymer/MMT nanocomposites. The structure of intercalated GMMT was characterized by thermogravimetric analysis, X-ray powder diffraction, and scanning electron microscopy (SEM). The optimum intercalation conditions in scCO2 were established by trying a range of reaction times and pressures. The structures of intercalated GMMT obtained under optimum scCO2 conditions and water were compared. The basal spacing of GMMT intercalated in scCO2 was almost the same as that in water, and both were obviously larger than that of GMMT. The GMMT exhibited a compact spherical morphology (examined using SEM), and the surface structures (including surface morphology, surface roughness, and surface compactness) of samples intercalated in water became ‘less compact’ and the degree of the ‘compactness’ of samples intercalated in scCO2 decreased further. Whether in water or scCO2, samples intercalated with TDTHP exhibited a larger basal spacing and the extent of disorder increased compared to that for samples intercalated with MTAB. The pristine MMT was also intercalated for comparison and silane grafting was proven to contribute to the increased basal spacing and ‘less compact’ surface structure.
Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However, due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficult to obtain a high-resolution absorption spectrum. Thus, we present a method of ultrahigh energy-resolution absorption spectroscopy via a high repetition rate, picosecond duration pulsed neutron source driven by a terawatt laser. The technology of single neutron count is used, which results in easily distinguishing the width of approximately 20 keV at 2 MeV and an asymmetric shape of the neutron absorption peak. The absorption spectroscopy based on a laser neutron source has one order of magnitude higher energy-resolution power than the state-of-the-art traditional neutron sources, which could be of benefit for precisely measuring nuclear structure data.
(S)-α-Ethyl-2-oxo-1-pyrrolidineacetamide (trade name levetiracetam), a derivative of piracetam, is used clinically as an add-on treatment for partial-onset seizures. In this study, we report the solid-state structure of a new drug co-crystal produced from levetiracetam and 3,5-dinitrosalicylic acid through cooling crystallization. This compound was further characterized by infrared spectroscopy, powder X-ray diffraction, and single-crystal X-ray diffraction. The new co-crystals show a 1:1 stoichiometry and crystallize in the monoclinic system, space group P21, with cell parameters: a = 9.7709(3) Å, b = 6.2202(2) Å, c = 14.7280(4) Å, α = 90°, β = 96.0340(10)°, γ = 90°, V = 890.16(5) Å3, and Z = 2. It is identified that hydrogen bonds are the main interactions between levetiracetam and 3,5-dinitrosalicylic acid, and the contribution of each hydrogen bond in maintaining the stability of the crystal structure was also quantified using Hirshfeld surface analysis.
Major epidemics have had a huge impact on the manufacturing industry. This study aimed to explore knowledge innovation in the field of emergency manufacturing during pandemics with a systematic quantitative analysis.
Methods:
Based on the Web of Science (WOS) Core Collection, the bibliometric method and the CiteSpace tool were used.
Results:
A total of 286 literature were obtained from the WOS database. During coronavirus disease (COVID-19), there was a surge in the number of publications. A new field of research on pandemic-triggered emergency manufacturing is gradually forming with accumulated research output. The analysis of the document co-citation showed how the research on pandemic situations and viruses brought emergency manufacturing into the research scope of scholars, and what attempts were made by the original scholars. Pandemic-triggered research hotspots and research trends in the post-pandemic era mainly boiled down to 3 aspects: technological innovation, material innovation, and management innovation in the field of emergency manufacturing.
Conclusions:
COVID-19 strengthened academic exchange and cooperation and promotes knowledge output in this field. This study provides an in-depth perspective for emergency manufacturing research and helps researchers realize the panorama of this field and establish future research directions.
We investigate when a Legendrian knot in the standard contact ${{\mathbb{R}}}^3$ has a non-orientable exact Lagrangian filling. We prove analogs of several results in the orientable setting, develop new combinatorial obstructions to fillability, and determine when several families of knots have such fillings. In particular, we completely determine when an alternating knot (and more generally a plus-adequate knot) is decomposably non-orientably fillable and classify the fillability of most torus and 3-strand pretzel knots. We also describe rigidity phenomena of decomposable non-orientable fillings, including finiteness of the possible normal Euler numbers of fillings and the minimisation of crosscap numbers of fillings, obtaining results which contrast in interesting ways with the smooth setting.
With advancements in cancer treatments, the survival rates of patients with their first primary cancer (FPC) have increased, resulting in a rise in the number of patients with second primary cancer (SPC). However, there has been no assessment on the incidence of suicide among patients with SPC. This study assessed the occurrence of suicide among patients with SPC and compared them with that in patients with FPC.
Methods
This was a retrospective, population-based cohort study that followed patients with FPC and SPC diagnosed from the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) 17 registries database between 1 January 2000 and 31 December 2019.
Results
For patients with SPC, an age of 85+ years at diagnosis was associated with a higher incidence of suicide death (HR, 1.727; 95% CI, 1.075–2.774), while the suicide death was not considerably different in the chemotherapy group (P > 0.05). Female genital system cancers (HR, 3.042; 95% CI, 1.819–6.361) accounted for the highest suicide death among patients with SPC. The suicide death distribution of patients with SPC over time indicated that suicide events mainly occurred within 5 to 15 years of diagnosis. Compared with patients with FPC, patients with SPC in general had a lower risk of suicide, but increased year by year.
Conclusion
The risk of suicide was reduced in patients with SPC compared with patients with FPC, but increased year by year. Therefore, oncologists and related health professionals need to provide continuous psychological support to reduce the incidence of suicide. The highest suicide death was found among patients with female genital system cancer.
A target benefit plan (TBP) is a collective defined contribution (DC) plan that is growing in popularity in Canada. Similar to DC plans, TBPs have fixed contribution rates, but they also implement pooling of longevity and investment risk. In this paper, we formulate a multi-period model that incorporates two sources of risk – asset risk and labor income risk for active members. We present an optimal investment and retirement benefits schedule for TBP members with a fixed contribution rate. Using Australian data from 1965 to 2018, we evaluate the performance of the optimal TBP scheme and compare it to the optimal DC scheme. By adopting the benefit–investment strategy derived in this paper, we demonstrate the stability of benefit distribution over time for a TBP scheme in this stochastic formulation. To outperform the DC scheme’s benefit payment, careful consideration shall be given to the benefit target in the TBP scheme. A high target may not be achievable, while a low target can impede the accumulation momentum of the fund’s wealth in its early stages. Moreover, a TBP fund’s investment strategy is primarily influenced by the wealth target, with more aggressive investments in risky assets as the wealth target increases. This analysis may shed light on the possible improvements to retirement planning in Australia. Although the results are sensitive to the choice of model parameters, overall, the proposed TBP promotes system stability in various scenarios.
Air route networks can no longer meet operational efficiency requirements because of the rapid growth of complex traffic flows. Machine learning is employed to investigate the evolutionary mechanism of congestion in such networks in view of their high complexity and high density, and a reasonable network optimisation scheme is presented. First, deviations between nominal and actual routes are investigated with reference to radar track data, and a network reflecting actual route operations is constructed using adversarial neural networks. Second, flight time is used to characterise congestion in route networks. Actual network operations are considered, and congestion is defined from the perspective of road traffic engineering. The effects of the operational properties of traffic flows on flight times are analysed to establish various congestion indicators. A gradient boosting model is used to select indicator characteristics and analyse patterns in the variations of indicator values for each flight segment in distinct periods. The indicator–time relationship is leveraged to explore the evolutionary mechanism of congestion in the route network. Third, on the basis of this mechanism, a multiobjective optimisation model of congestion is formulated, and a particle swarm optimisation algorithm is executed to adjust the route passage structure, thereby solving the optimisation model. Finally, calculation validation is conducted using radar track data from the control sector of the Yunnan region. The average flight time in a route segment is 10% shorter in the optimised route network than in the nonoptimised route network, which confirms that the optimisation solution is practicable.
Light has a substantial effect on the behaviour and physiology of nocturnal moths. Ectropis grisescens is a major nocturnal tea pest in China, and light traps are commonly used to control geometrid moths because of their positive phototaxis. However, some moths gather around light traps and enter the light adaptation state, which decreases the efficacy of light traps in controlling this pest. We identified opsin genes and the spectral sensitivities of the photoreceptors of E. grisescens moths. We also determined the effects of several monochromatic lights on opsin gene expression and light adaptation. We detected three types of opsin genes and six spectral sensitive peaks (at 370, 390, 480, 530, 550, and 580 nm). We also observed significant changes in the diurnal rhythm of opsin gene expression under different light conditions. When active males were suddenly exposed to different monochromatic lights, they quickly entered the light adaptation state, and the adaptation time was negatively correlated with the light intensity. Males were most sensitive to 390 nm wavelengths, followed by 544 nm, 457 nm, and 593 nm. Red light (627 nm) did not affect the activity of E. grisescens males but had detectable physiological effects.