We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Cambridge Core ecommerce is unavailable Sunday 08/12/2024 from 08:00 – 18:00 (GMT). This is due to site maintenance. We apologise for any inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mild cognitive deficits (MCD) emerge before the first episode of psychosis (FEP) and persist in the clinical high-risk (CHR) stage. This study aims to refine risk prediction by developing MCD models optimized for specific early psychosis stages and target populations.
Methods
A comprehensive neuropsychological battery assessed 1059 individuals with FEP, 794 CHR, and 774 matched healthy controls (HCs). CHR subjects, followed up for 2 years, were categorized into converters (CHR-C) and non-converters (CHR-NC). The MATRICS Consensus Cognitive Battery standardized neurocognitive tests were employed.
Results
Both the CHR and FEP groups exhibited significantly poorer performance compared to the HC group across all neurocognitive tests (all p < 0.001). The CHR-C group demonstrated poorer performance compared to the CHR-NC group on three sub-tests: visuospatial memory (p < 0.001), mazes (p = 0.005), and symbol coding (p = 0.023) tests. Upon adjusting for sex and age, the performance of the MCD model was excellent in differentiating FEP from HC, as evidenced by an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.895 (p < 0.001). However, when applied in the CHR group for predicting CHR-C (AUC = 0.581, p = 0.008), the performance was not satisfactory. To optimize the efficiency of psychotic risk assessment, three distinct MCD models were developed to distinguish FEP from HC, predict CHR-C from CHR-NC, and identify CHR from HC, achieving accuracies of 89.3%, 65.6%, and 80.2%, respectively.
Conclusions
The MCD exhibits variations in domains, patterns, and weights across different stages of early psychosis and diverse target populations. Emphasizing precise risk assessment, our findings highlight the importance of tailored MCD models for different stages and risk levels.
There is still controversy about optimal dietary iodine intake as the Universal Salt Iodization policy enforcement in China. A modified iodine balance study was thus conducted to explore the suitable iodine intake in Chinese adult males using the iodine overflow hypothesis. In this study, thirty-eight apparently healthy males (19·1 (sd 0·6) years) were recruited and provided with designed diets. After the 14-d iodine depletion, daily iodine intake gradually increased in the 30-d iodine supplementation, consisting of six stages and each of 5 d. All foods and excreta (urine, faeces) were collected to examine daily iodine intake, iodine excretion and the changes of iodine increment in relation to those values at stage 1. The dose–response associations of iodine intake increment with excretion increment were fitted by the mixed effects models, as well as with retention increment. Daily iodine intake and excretion were 16·3 and 54·3 μg/d at stage 1, and iodine intake increment increased from 11·2 μg/d at stage 2 to 118·0 μg/d at stage 6, while excretion increment elevated from 21·5 to 95·0 μg/d. A zero iodine balance was dynamically achieved as 48·0 μg/d of iodine intake. The estimated average requirement and recommended nutrient intake were severally 48·0 and 67·2 μg/d, which could be corresponded to a daily iodine intake of 0·74 and 1·04 μg/kg per d. The results of our study indicate that roughly half of current iodine intakes recommendation could be enough in Chinese adult males, which would be beneficial for the revision of dietary reference intakes.
We demonstrate an ultra-broadband high temporal contrast infrared laser source based on cascaded optical parametric amplification, hollow-core fiber (HCF) and second harmonic generation processes. In this setup, the spectrum of an approximately 1.8 μm laser pulse has near 1 μm full bandwidth by employing an argon gas-filled HCF. Subsequently, after frequency doubling with cascaded crystals and dispersion compensation by a fused silica wedge pair, 9.6 fs (~3 cycles) and 150 μJ pulses centered at 910 nm with full bandwidth of over 300 nm can be generated. The energy stability of the output laser pulse is excellent with 0.8% (root mean square) over 20 min, and the temporal contrast is >1012 at –10 ps before the main pulse. The excellent temporal and spatial characteristics and stability make this laser able to be used as a good seed source for ultra-intense and ultrafast laser systems.
Energy homeostasis is essential for organisms to maintain fluctuation in energy accumulation, mobilization. Lipids as the main energy reserve in insects, their metabolism is under the control of many physiological program. This study aimed to determine whether the adipokinetic hormone receptor (AKHR) was involved in the lipid mobilization in the Spodoptera litura. A full-length cDNA encoding AKHR was isolated from S. litura. The SlAKHR protein has a conserved seven-transmembrane domain which is the character of a putative G protein receptor. Expression profile investigation revealed that SlAKHR mRNA was highly expressed in immatural stage and abundant in fat body in newly emerged female adults. Knockdown of SlAKHR expression was achieved through RNAi by injecting double-stranded RNA (dsRNA) into the 6th instar larvae. The content of triacylgycerol (TAG) in the fat body increased significantly after the SlAKHR gene was knockdown. And decrease of TAG releasing to hemolymph with increase of free fatty acid (FFA) in hemolymph were observed when the SlAKHR gene was knowned-down. In addition, lipid droplets increased in fat body was also found. These results suggested that SlAKHR is critical for insects to regulate lipids metabolism.
Schizophrenia is a severely debilitating psychiatric disorder with high heritability and polygenic architecture. A higher polygenic risk score for schizophrenia (SzPRS) has been associated with smaller gray matter volume, lower activation, and decreased functional connectivity (FC). However, the effect of polygenic inheritance on the brain white matter microstructure has only been sparsely reported.
Methods
Eighty-four patients with first-episode schizophrenia (FES) patients and ninety-three healthy controls (HC) with genetics, diffusion tensor imaging (DTI), and resting-state functional magnetic resonance imaging (rs-fMRI) data were included in our study. We investigated impaired white matter integrity as measured by fractional anisotropy (FA) in the FES group, further examined the effect of SzPRS on white matter FA and FC in the regions connected by SzPRS-related white matter tracts.
Results
Decreased FA was observed in FES in many commonly identified regions. Among these regions, we observed that in the FES group, but not the HC group, SzPRS was negatively associated with the mean FA in the genu and body of corpus callosum, right anterior corona radiata, and right superior corona radiata. Higher SzPRS was also associated with lower FCs between the left inferior frontal gyrus (IFG)–left inferior temporal gyrus (ITG), right IFG–left ITG, right IFG–left middle frontal gyrus (MFG), and right IFG–right MFG in the FES group.
Conclusion
Higher polygenic risks are linked with disrupted white matter integrity and FC in patients with schizophrenia. These correlations are strongly driven by the interhemispheric callosal fibers and the connections between frontotemporal regions.
Giardia duodenalis is a common zoonotic intestinal pathogen. It has been increasingly reported in humans and animals; however, genotyping information for G. duodenalis in captive animals is still limited. This study was conducted to assess the prevalence and multilocus genotyping of G. duodenalis in captive animals in zoological gardens in Shanghai, China. A total of 678 fresh fecal samples were randomly collected from captive animals including non-human primates (NHPs) (n = 190), herbivores (n = 190), carnivores (n = 151), birds (n = 138) and reptiles (n = 9) in a zoo and were examined for the presence of G. duodenalis using nested polymerase chain reaction (nested PCR). All G. duodenalis positive samples were assayed with PCR followed by sequencing at β-giardin (bg), glutamate dehydrogenase (gdh) and triose phosphate isomerase (tpi) genes. In this study, 42 specimens (6.2%) were tested G. duodenalis-positive of the 678 fecal samples examined based on a single locus. A total of 30 (4.4%), 30 (4.4%) and 22 (3.2%) specimens were successfully amplified and sequenced at gdh, tpi and bg loci, respectively. Assemblages A and B were identified with assemblage B dominating in NHPs. Sequence analysis demonstrated that one, two and five new isolates were identified at bg, gdh and tpi loci. DNA sequences and new assemblage-subtypes of zoonotic G. duodenalis assemblages A and B were identified in the current study. Our data indicate the occurrence and molecular diversity of G. duodenalis and the potential zoonotic transmission in captive animals in China.
Antipsychotics are widely used for treating patients with psychosis, and target threshold psychotic symptoms. Individuals at clinical high risk (CHR) for psychosis are characterized by subthreshold psychotic symptoms. It is currently unclear who might benefit from antipsychotic treatment. Our objective was to apply a risk calculator (RC) to identify people that would benefit from antipsychotics.
Methods
Drawing on 400 CHR individuals recruited between 2011 and 2016, 208 individuals who received antipsychotic treatment were included. Clinical and cognitive variables were entered into an individualized RC for psychosis; personal risk was estimated and 4 risk components (negative symptoms-RC-NS, general function-RC-GF, cognitive performance-RC-CP, and positive symptoms-RC-PS) were constructed. The sample was further stratified according to the risk level. Higher risk was defined based on the estimated risk score (20% or higher).
Results
In total, 208 CHR individuals received daily antipsychotic treatment of an olanzapine-equivalent dose of 8.7 mg with a mean administration duration of 58.4 weeks. Of these, 39 (18.8%) developed psychosis within 2 years. A new index of factors ratio (FR), which was derived from the ratio of RC-PS plus RC-GF to RC-NS plus RC-CP, was generated. In the higher-risk group, as FR increased, the conversion rate decreased. A small group (15%) of CHR individuals at higher-risk and an FR >1 benefitted from the antipsychotic treatment.
Conclusions
Through applying a personal risk assessment, the administration of antipsychotics should be limited to CHR individuals with predominantly positive symptoms and related function decline. A strict antipsychotic prescription strategy should be introduced to reduce inappropriate use.
No studies have reported on how to relieve distress or relax in medical health workers while wearing medical protective equipment in coronavirus disease 2019 (COVID-19) pandemic. The study aimed to establish which relaxation technique, among six, is the most feasible in first-line medical health workers wearing medical protective equipment.
Methods
This was a two-step study collecting data with online surveys. Step 1: 15 first-line medical health workers were trained to use six different relaxation techniques and reported the two most feasible techniques while wearing medical protective equipment. Step 2: the most two feasible relaxation techniques revealed by step 1 were quantitatively tested in a sample of 65 medical health workers in terms of efficacy, no space limitation, no time limitation, no body position requirement, no environment limitation to be done, easiness to learn, simplicity, convenience, practicality, and acceptance.
Results
Kegel exercise and autogenic relaxation were the most feasible techniques according to step 1. In step 2, Kegel exercise outperformed autogenic relaxation on all the 10 dimensions among the 65 participants while wearing medical protective equipment (efficacy: 24 v. 15, no space limitation: 30 v. 4, no time limitation: 31 v. 4, no body position requirement: 26 v. 4, no environment limitation: 30 v. 11, easiness to learn: 28 v. 5, simplicity: 29 v. 7, convenience: 29 v. 4, practicality: 30 v. 14, acceptance: 32 v. 6).
Conclusion
Kegel exercise seems a promising self-relaxation technique for first-line medical health workers while wearing medical protective equipment among COVID-19 pandemic.
Age effects may be important for improving models for the prediction of conversion to psychosis for individuals in the clinical high risk (CHR) state. This study aimed to explore whether adolescent CHR individuals (ages 9–17 years) differ significantly from adult CHR individuals (ages 18–45 years) in terms of conversion rates and predictors.
Method
Consecutive CHR individuals (N = 517) were assessed for demographic and clinical characteristics and followed up for 3 years. Individuals with CHR were classified as adolescent (n = 244) or adult (n = 273) groups. Age-specific prediction models of psychosis were generated separately using Cox regression.
Results
Similar conversion rates were found between age groups; 52 out of 216 (24.1%) adolescent CHR individuals and 55 out of 219 (25.1%) CHR adults converted to psychosis. The conversion outcome was best predicted by negative symptoms compared to other clinical variables in CHR adolescents (χ2 = 7.410, p = 0.006). In contrast, positive symptoms better predicted conversion in CHR adults (χ2 = 6.585, p = 0.01).
Conclusions
Adolescent and adult CHR individuals may require a different approach to early identification and prediction. These results can inform the development of more precise prediction models based on age-specific approaches.
Only 30% or fewer of individuals at clinical high risk (CHR) convert to full psychosis within 2 years. Efforts are thus underway to refine risk identification strategies to increase their predictive power. Our objective was to develop and validate the predictive accuracy and individualized risk components of a mobile app-based psychosis risk calculator (RC) in a CHR sample from the SHARP (ShangHai At Risk for Psychosis) program.
Method
In total, 400 CHR individuals were identified by the Chinese version of the Structured Interview for Prodromal Syndromes. In the first phase of 300 CHR individuals, 196 subjects (65.3%) who completed neurocognitive assessments and had at least a 2-year follow-up assessment were included in the construction of an RC for psychosis. In the second phase of the SHARP sample of 100 subjects, 93 with data integrity were included to validate the performance of the SHARP-RC.
Results
The SHARP-RC showed good discrimination of subsequent transition to psychosis with an AUC of 0.78 (p < 0.001). The individualized risk generated by the SHARP-RC provided a solid estimation of conversion in the independent validation sample, with an AUC of 0.80 (p = 0.003). A risk estimate of 20% or higher had excellent sensitivity (84%) and moderate specificity (63%) for the prediction of psychosis. The relative contribution of individual risk components can be simultaneously generated. The mobile app-based SHARP-RC was developed as a convenient tool for individualized psychosis risk appraisal.
Conclusions
The SHARP-RC provides a practical tool not only for assessing the probability that an individual at CHR will develop full psychosis, but also personal risk components that might be targeted in early intervention.
Few of the previous studies of clinical high risk of psychosis (CHR) have explored whether outcomes other than conversion, such as poor functioning or treatment responses, are better predicted when using risk calculators. To answer this question, we compared the predictive accuracy between the outcome of conversion and poor functioning by using the NAPLS-2 risk calculator.
Methods
Three hundred CHR individuals were identified using the Chinese version of the Structured Interview for Prodromal Symptoms. Of these, 228 (76.0%) completed neurocognitive assessments at baseline and 199 (66.3%) had at least a 1-year follow-up assessment. The latter group was used in the NAPLS-2 risk calculator.
Results
We divided the sample into two broad categories based on different outcome definitions, conversion (n = 46) v. non-conversion (n = 153) or recovery (n = 138) v. poor functioning (n = 61). Interestingly, the NAPLS-2 risk calculator showed moderate discrimination of subsequent conversion to psychosis in this sample with an area under the receiver operating characteristic curve (AUC) of 0.631 (p = 0.007). However, for discriminating poor functioning, the AUC of the model increased to 0.754 (p < 0.001).
Conclusions
Our results suggest that the current risk calculator was a better fit for predicting a poor functional outcome and treatment response than it was in the prediction of conversion to psychosis.
Annexin A2 (ANXA2) is reported to be associated with cancer development. To investigate the roles ANXA2 plays during the development of cancer, the RNAi method was used to inhibit the ANXA2 expression in caco2 (human colorectal cancer cell line) and SMMC7721 (human hepatocarcinoma cell line) cells. The results showed that when the expression of ANXA2 was efficiently inhibited, the growth and motility of both cell lines were significantly decreased, and the development of the motility relevant microstructures, such as pseudopodia, filopodia, and the polymerization of microfilaments and microtubules were obviously inhibited. The cancer cell apoptosis was enhanced without obvious significance. The possible regulating pathway in the process was also predicted and discussed. Our results suggested that ANXA2 plays important roles in maintaining the malignancy of colorectal and hepatic cancer by enhancing the cell proliferation, motility, and development of the motility associated microstructures of cancer cells based on a possible complicated signal pathway.
We present a high-peak-power, near-infrared laser system based on optical parametric chirped pulse amplification pumped by a home-built picosecond pumping laser, which can generate over 40 mJ energy at 1450 nm center wavelength and operate at 100 Hz repetition rate. Subsequently, the chirped laser pulses are compressed down to 60 fs with 26.5 mJ energy, corresponding to a peak power of 0.44 TW. This high-energy, long-wavelength laser source is highly suitable for driving various nonlinear optical phenomena, such as high-order harmonic generation and high-flux coherent extreme ultraviolet/soft X-ray radiation.
This study aim to derive and validate a simple and well-performing risk calculator (RC) for predicting psychosis in individual patients at clinical high risk (CHR).
Methods
From the ongoing ShangHai-At-Risk-for-Psychosis (SHARP) program, 417 CHR cases were identified based on the Structured Interview for Prodromal Symptoms (SIPS), of whom 349 had at least 1-year follow-up assessment. Of these 349 cases, 83 converted to psychosis. Logistic regression was used to build a multivariate model to predict conversion. The area under the receiver operating characteristic (ROC) curve (AUC) was used to test the effectiveness of the SIPS-RC. Second, an independent sample of 100 CHR subjects was recruited based on an identical baseline and follow-up procedures to validate the performance of the SIPS-RC.
Results
Four predictors (each based on a subset of SIPS-based items) were used to construct the SIPS-RC: (1) functional decline; (2) positive symptoms (unusual thoughts, suspiciousness); (3) negative symptoms (social anhedonia, expression of emotion, ideational richness); and (4) general symptoms (dysphoric mood). The SIPS-RC showed moderate discrimination of subsequent transition to psychosis with an AUC of 0.744 (p < 0.001). A risk estimate of 25% or higher had around 75% accuracy for predicting psychosis. The personalized risk generated by the SIPS-RC provided a solid estimate of conversion outcomes in the independent validation sample, with an AUC of 0.804 [95% confidence interval (CI) 0.662–0.951].
Conclusion
The SIPS-RC, which is simple and easy to use, can perform in the same manner as the NAPLS-2 RC in the Chinese clinical population. Such a tool may be used by clinicians to counsel appropriately their patients about clinical monitor v. potential treatment options.
Due to the lack of an effective and noninvasive screening tool, the early diagnosis of colorectal cancer (CRC) is currently difficult. For the early diagnosis of CRC, we have developed Fe3O4-Dye800-single chain fragment variable (ScFv)egfr/vegfr nanoprobes. ScFvegfr/vegfr (ScFv2) conjugated onto Fe3O4 nanoprobes efficiently recognized CRC tumors in vitro and in vivo. Near-infrared fluorescence imaging modalities such as Dye800 were utilized simultaneously with magnetic resonance to enhance detection efficiency. Fe3O4-Dye800-ScFv2 successfully detected tiny CRC tumors; the synergistic ScFv2 successfully enhanced CRC targeting. Thus, Fe3O4-Dye800-ScFv2 nanoprobes may represent a new molecular imaging strategy for the early detection of CRC.
Shortawn foxtail (Alopecurus aequalis Sobol.) is an invasive and highly troublesome weed species originating from North America that has become widespread across China. Since its proliferation seriously threatens crop production worldwide, understanding its genetic diversity is critical for developing a forecasting system for integrated pest management plans. To accelerate the application of molecular markers in A. aequalis, this study aimed to develop a set of expressed sequence tag-simple sequence repeat (SSR) markers using previous high-throughput sequencing data. In this study, a total of 1411 SSR loci were identified from 95,479 unigenes. Tri-nucleotide repeat motifs were the most abundant type with a frequency of 66.27%, followed by di- (24.95%) and tetra-nucleotide (8.78%). Among the loci, 584 primer pairs were successfully designed for marker development. Subsequently, a subset of 36 primer pairs was randomly selected and synthesized, of which 12 (33.33%) pairs successfully revealed abundant allelic polymorphism. Additionally, to investigate their utility, the genotypes of 160 individuals from 20 natural populations representing diverse wild genotypes of A. aequalis were analysed by using these 12 polymorphic markers. These novel SSR markers developed here are reliable and useful for genetic analysis on this invasive plant and will greatly enrich its genetic resource.
Structural hierarchy is ubiquitous in nature and quite important for optimizing the properties of functional materials. Carbon nanomaterials, owing to their unique and tunable physical and chemical properties, have been regarded as promising candidates for various energy storage systems. Constructing hierarchically structured carbon nanomaterials (HSCNs) can boost electrochemical performance of nanocarbons. Therefore, HSCNs have attracted tremendous research attentions in recent years. In this review, we summarized the recent progress in hierarchical structure design of carbon nanomaterials and their potential applications in different energy storage technologies. First we give a brief introduction about carbon nanomaterials and the hierarchical structure merits. Subsequently, recent research works on hierarchical structure design of carbon nanomaterials was summarized and classified according to applications in lithium-ion batteries, sodium-ion batteries, supercapacitors and lithium–sulfur batteries, respectively. In addition, the challenges of HSCNs in different applications were also concluded and reviewed. At last, design principles of HSCNs were summarized and future development trends were prospected.
The duration of untreated psychosis (DUP) has been widely studied. However, for individuals with attenuated psychosis syndrome (APS), it is unclear whether the duration of untreated prodromal symptoms (DUPrS) also has a negative effect on the progression of psychosis. Our aim was to identify demographic and clinical factors contributing to the DUPrS in a large sample of individuals with APS, and to evaluate the association between DUPrS and the conversion to psychosis.
Method
A sample of 391 individuals with APS, who were identified through a structured interview for prodromal syndromes, were included in this study, of whom a total of 334 patients had completed at least a 1-year clinical follow-up. A total of 57 individuals had converted to psychosis.
Results
The average DUPrS was 4.8 months for the whole sample. Individuals with a longer DUPrS were likely to be men, non-local residents, with abnormal thought symptoms, a higher severity level of negative symptoms, the lower severity level of general symptoms, and lower level of general function before the onset of attenuated positive symptoms. A DUPrS of less than 2 months, or more than 6 months, lowered the risk for conversion to psychosis.
Conclusions
Our data suggested that the association between the DUPrS and outcome in individuals with APS were likely to be different, which is either long or short DUPrS was not related to future psychosis onset. Individuals with APS were more likely to have a group of features associated with a longer DUPrS.
We demonstrate a high-contrast, joule-level Nd:glass laser system operating at 0.5 Hz repetition rate based on a double chirped pulse amplification (CPA) scheme. By injecting high-contrast, high-energy seed pulses into the Nd:glass CPA stage, the pulse energy is amplified to 1.9 J through two optical parametric CPA stages and two Nd:glass amplifiers. The temporal contrast of compressed pulse is measured down to the level of $10^{-8}$ at tens of ps, and $10^{-10}$ near 200 ps before the main pulse, respectively.
Early life is considered a critical period for determining long-term metabolic health. Postnatal over-nutrition may alter glucocorticoid (GC) metabolism and increase the risk of developing obesity and metabolic disorders in adulthood. Our aim was to assess the effects of the dose and timing of a fish oil diet on obesity and the expression of GC-activated enzyme 11β-hydroxysteroid dehydrogenase type 1 (HSD1) in postnatal overfed rats. Litter sizes were adjusted to three (small litter (SL)) or ten (normal litter) rats on postnatal day 3 to induce overfeeding or normal feeding. The SL rats were divided into three groups after weaning: high-dose fish oil (HFO), low-dose fish oil (LFO) and standard-diet groups. After 10 weeks, the HFO diet reduced body weight gain (16 %, P<0·05), improved glucose intolerance and decreased hyperlipaemia levels (P<0·05) in SL rats, but the LFO diet did not have any effect on the same rats. Moreover, we chose postnatal week 3 (W3), 6 (W6) and 8 (W8) as the intervention time points at which to begin the 10-week HFO diet, and found that the HFO diet improved glucose utilisation and lipid metabolism at all time points. However, body weight of SL rats was reversed to normal levels by the post-weaning intervention (461 (sem 9·1) v. 450 (sem 2·0)). 11β-HSD1 mRNA expression in the adipose tissue (49 (sem 7·5) v. 161 (sem 18·3), P<0·05) and hepatic tissue (11 (sem 0·9) v. 16 (sem 1·5), P<0·05) was decreased by the HFO diet at W3, but not at W6 or W8 (P>0·05). In conclusion, the post-weaning HFO diet could reverse adverse outcomes and decrease tissue GC activity in postnatal overfed rats.