We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Isolated multi-MeV $\gamma$-rays with attosecond duration, high collimation and beam angular momentum (BAM) may find many interesting applications in nuclear physics, astrophysics, etc. Here, we propose a scheme to generate such $\gamma$-rays via nonlinear Thomson scattering of a rotating relativistic electron sheet driven by a few-cycle twisted laser pulse interacting with a micro-droplet target. Our model clarifies the laser intensity threshold and carrier-envelope phase effect on the generation of the isolated electron sheet. Three-dimensional numerical simulations demonstrate the $\gamma$-ray emission with 320 attoseconds duration and peak brilliance of $9.3\times 10^{24}$ photons s${}^{-1}$ mrad${}^{-2}$ mm${}^{-2}$ per 0.1$\%$ bandwidth at 4.3 MeV. The $\gamma$-ray beam carries a large BAM of $2.8 \times 10^{16}\mathrm{\hslash}$, which arises from the efficient BAM transfer from the rotating electron sheet, subsequently leading to a unique angular distribution. This work should promote the experimental investigation of nonlinear Thomson scattering of rotating electron sheets in large laser facilities.
Species of epiphytic microbiota are closely associated with the fermentation performance of natural forage silage. This study aimed to evaluate the dynamic microbial communities, fermentation parameters, and aerobic stability of Napier grass silage from the same variety and growth period but harvested from three different regions (NGP1, NGP2, and NGP3). After 60 days of ensiling, triplicate silos were opened for sampling and testing aerobic stability. The epiphytic microbiota with higher relative abundances in fresh Napier grass (NGP1, NGP2, and NGP3) were Weissella, Enterobacter, and Lactococcus, respectively. After 60 days of ensiling, NGP3 exhibited higher fermentation quality, indicated by higher lactic acid (LA) concentration and lower pH than that of NGP1 and NGP2. The NH3–N content of all treatments was lower than 100 g/kg total nitrogen. Compared with NGP1 and NGP2 silage, NGP3 silage exhibited a sharp rise in pH and LA consumption during air exposure. After 7 days of air exposure, NGP3 had higher ethanol concentrations and pH. Ruminiclostridium_5, Pediococcus, and Lactobacillus predominated in NGP1, NGP2, and NGP3 silages, respectively, whereas Candida and Monascus predominated in air-exposed NGP3 silage. The bacterial co-occurrence networks from fresh samples to ensiling and air exposure became more complex; however, NGP3 had a higher negative correlation with co-occurrence after air exposure. Different regions had significant effects on the fermentation patterns, bacterial communities, and aerobic stability of Napier grass silage. This was mainly due to variable epiphytic microbiota. Higher fermentation quality of Napier grass silage may also result in accelerated spoilage due to air exposure. Candida and Monascus were primarily responsible for the lower dry matter recovery and higher ethanol contents and air exposure spoilage of Napier grass silage.
Family dysfunction plays an important role in cyberbullying and cybervictimization. However, little research has investigated the longitudinal relations and the mediating mechanisms between them during adolescence. This study examined the longitudinal relations between family dysfunction and cyberbullying and cybervictimization, along with whether depressive symptoms function as mediators between them at the within-person level. A total of 3,743 Chinese adolescents (46.2% females; Mage = 9.92 years; SD = 0.51) participated a five-wave longitudinal study with a 6-month time interval. The results of random intercept cross-lagged panel model found that: (1) family dysfunction directly predicted depressive symptoms and vice versa at the within-person level; (2) depressive symptoms directly predicted cyberbullying and cybervictimization at the within-person level, but not vice versa; (3) family dysfunction indirectly predicted cyberbullying and cybervictimization via depressive symptoms at the within-person level; (4) at the between-person level, there were significant associations among family dysfunction, depressive symptoms, cyberbullying and cybervictimization. The results are discussed on the basis of the mechanisms that lead to cyberbullying and cybervictimization.
The effect of sheared E × B flow on the blob dynamics in the scrape-off layer (SOL) of HL-2A tokamak has been studied during the plasma current ramp-up in ohmically heated deuterium plasmas by the combination of poloidal and radial Langmuir probe arrays. The experimental results indicate that the SOL sheared E × B flow is substantially enhanced as the plasma current exceeds a certain value and the strong sheared E × B flow has the ability to slow the blob radial motion via stretching its poloidal correlation length. The locally accumulated blobs are suggested to be responsible for the increase of plasma density just outside the Last Closed Flux Surface (LCFS) observed in this experiment. The results presented here reveal the significant role played by the strong sheared E × B flow on the blob dynamics, which provides a potential method to control the SOL width by modifying the sheared E × B flow in future tokamak plasmas.
Sampling flower-visiting insects in agricultural fields at large spatial and temporal scales is significant for understanding local insect pollinator communities. The most commonly used method, pan trap, has been criticized due to its attractant bias. A window trap (also referred to as the flight-intercept trap) is a non-attractant sampling method, which has been applied in forests and grasslands, but rarely in agricultural fields. We aim to test whether we can replace pan traps with window traps in agricultural fields by comparing species richness and species composition between the two methods, and to show whether flower-visiting insects collected in both traps can reflect flower-visiting activity recorded by camera observation. We conducted a 2-year study to compare the performance of these sampling methods in an oilseed rape field. Results showed that the relative abundance of dominant flower-visiting species was highly correlated between the window trap and the pan trap samples, while window traps caught more individuals and higher (rarefied) species richness than pan traps. The species composition of window traps was more similar to each other than that of pan traps. The proportion of honey bees (Apis spp.) collected in both traps underestimated their flower-visiting activity recorded by camera observations, while sweat bees (Halictidae) and butterflies (Lepidoptera) were overestimated. Our study suggests that the window trap has the potential to serve as an alternative sampling method of flower-visiting insects to the pan trap. However, we need to be cautious when using specimens caught in both traps as a proxy of their flower-visiting activity.
The aim of this study was to determine the pregnancy loss rate of amniocentesis with double-needle insertions in twin pregnancies. This was a retrospective study of twin pregnancies who underwent amniocentesis with double-needle insertion between 2010 and 2019 at a single center. The pregnancy loss rates were recorded as single or double fetal loss before 24 weeks’ gestation and within 4 weeks after the procedure. Risk factors for pregnancy loss after amniocentesis were also assessed. A total of 678 twin pregnancies with amniocentesis were finally included. The pregnancy loss rates before 24 weeks’ gestation and within 4 weeks after the procedure were 0.9% and 1.9%, respectively. Only one fetal loss was presumed to be a direct result of the procedure. All other cases were complicated by structural or chromosomal anomalies. Twin pregnancies with abnormal ultrasound findings had a significantly higher rate of pregnancy loss with a relative risk of 4.81 (95% CI [1.03, 22.2]). Our study showed a low pregnancy loss rate after amniocentesis in twin pregnancies with double-needle insertions technique of sampling, which can help decision making in prenatal screening and diagnosis for twin pregnancies.
We numerically and experimentally investigate the multi-pulsing mechanism in a dispersion-managed mode-locked Yb-doped fiber laser. Multi-pulsing occurs primarily owing to the inherent filtering effect of the chirped fiber Bragg grating. The spectral filtering effect restricts the spectral broadening induced by self-phase modulation and causes extra loss, leading to a decreased pump power threshold for the multi-pulsing state. Numerical simulations show that multi-pulsing emerges at a lower pump power when the spectral filter bandwidth becomes narrower. In the experiment, the spectral width increases as the net cavity dispersion approaches zero. Pulses with wider spectral widths experience more loss from the spectral filtering effect, leading to a decreased pump power threshold for multi-pulsing. Therefore, the net cavity dispersion also has an impact on the multi-pulsing threshold. Based on this conclusion, we devise a strategy to obtain single-pulsing operation with the shortest pulse width and the highest pulse energy.
The association between blood transfusion and ventilator-associated events (VAEs) has not been fully understood. We sought to determine whether blood transfusion increases the risk of a VAE.
Design:
Nested case-control study.
Setting:
This study was based on a registry of healthcare-associated infections in intensive care units at West China Hospital system.
Patients:
1,657 VAE cases and 3,293 matched controls were identified.
Methods:
For each case, 2 controls were randomly selected using incidence density sampling. We defined blood transfusion as a time-dependent variable, and we used weighted Cox models to calculate hazard ratios (HRs) for all 3 tiers of VAEs.
Results:
Blood transfusion was associated with increased risk of ventilator-associated complication-plus (VAC-plus; HR, 1.47; 95% CI, 1.22–1.77; P <.001), VAC-only (HR, 1.29; 95% CI, 1.01–1.65; P = .038), infection-related VAC-plus (IVAC-plus; HR, 1.78; 95% CI, 1.33–2.39; P < .001), and possible ventilator-associated pneumonia (PVAP; HR, 2.10; 95% CI, 1.10–3.99; P = .024). Red blood cell (RBC) transfusion was also associated with increased risk of VAC-plus (HR, 1.34; 95% CI, 1.08–1.65; P = .007), IVAC-plus (HR, 1.70; 95% CI, 1.22–2.36; P = .002), and PVAP (HR, 2.49; 95% CI, 1.17–5.28; P = .018). Compared to patients without transfusion, the risk of VAE was significantly higher in patients with RBC transfusions of >3 units (HR, 1.73; 95% CI, 1.25–2.40; P = .001) but not in those with RBC transfusions of 0–3 units.
Conclusion:
Blood transfusions were associated with increased risk of all tiers of VAE. The risk was significantly higher among patients who were transfused with >3 units of RBCs.
High-voltage power cables are important channels for power transmission systems. Their special geographical environment and harsh natural environment can lead to many different faults. At present, such special operations in dangerous and harsh environments are performed manually, which not only has high labor intensity and low work efficiency but also has great personal safety risks. In order to solve such difficult problems, this paper studies the power maintenance robot for insulator string replacement, spacer replacement, damper and drainage plate maintenance; the basic configuration and the operation motion planning have been proposed; and the virtual prototype of the inspection maintenance robots has been developed, and then the mechanical structure of the robots has been optimized by the robot kinematics modeling and analyzed the working space based on the Monte Carlo method. The system platform, operation function, structural characteristics and related key technologies involved in the robot system development were systematically summarized; the deep integration point for the robot technology with big data, cloud computing, artificial intelligence, and ubiquitous power Internet-of-Things technologies was also discussed. Finally, the physical prototype of the insulator replacement, drainage plate tightening, and damper replacement operation robot has been developed; several experimental tests on a 220 V live line have been conducted so as to verify the robot engineering practicality; and the main development and future research direction have also been pointed out at last.
Nitrogen is an important element for the growth of flue-cured tobacco and is closely related to its yield and quality. In order to pursue higher economic benefits, excessive fertilizer is generally applied in flue-cured tobacco production, which is unfavourable for the sustainable development of flue-cured tobacco production and for the environment. In 2016 and 2017, experiments using different nitrogen fertilizer application rates in flue-cure tobacco were conducted in Yunnan province, and the changes in agronomic, economic and chemical indices as well as in residual soil nitrogen were compared. Linear and quadratic models were used to compare the response of tobacco to nitrogen fertilizer. With increasing nitrogen fertilizer rate, the proportions of superior to medium tobacco and the average price of flue-cured tobacco leaves initially increased and then decreased, while fresh weight, dry weight and the proportion of inferior tobacco showed the opposite trend. Total sugar and reducing sugar contents decreased with increasing nitrogen fertilizer rates, while total nitrogen and nicotine contents increased. Sensory evaluation scores had the highest value when 90 kg N/ha and 120 kg N/ha were applied. Soil nitrate contents increased as nitrogen fertilizer rate increased. The quadratic model was suitable for the response of cultivar K326 to nitrogen and 90 kg N/ha could meet the needs of cultivar K326.
We aimed to explore and create an evaluation model to assess hospital response capability for a public health emergency (PHE).
Methods:
Grounded theory was used to construct a comprehensive evaluation index system. Combining with the index system and previous studies and policy documents, we investigated surge capability of hospitals in a PHE. The factor analysis method was used to establish the model.
Results:
The comprehensive evaluation system with 11 primary and 30 secondary indicators was constructed. A total of 89 secondary and tertiary hospitals were surveyed in China. The evaluation model (C = 0.587C1 + 0.151C2 + 0.140C3 + 0.122C4) was established. Four factors were identified, namely, preparation factor, treatment factor, emergency awareness factor, and prehospital first-aid factor.
Conclusions:
A public health emergency could bring huge losses and a capable hospital response was necessary. There was an urgent need to evaluate hospital capability for a PHE.
There seems to be geographical differences in decisions about breast conserving surgery (BCS) in breast cancer patients. This study was to evaluate patients’ attitude to BCS and to assess the factors affecting cancer practice in West China.
Methods:
A structured questionnaire was distributed to 184 patients, eliciting information about the patients’ characteristics, occupation, education, family life, recognition of illness, knowledge about BCS, the main means of gaining surgery information, selecting surgery approaches, preferences to breast reservation.
Results:
In all, 163 patients completed the questionnaire. The results indicated that only 7.4% of patients received BCS and 23% of the remaining patients desired to have BCS and the affecting factors were significantly associated with their family life, recognition of illness and the main means of gaining surgery information (P < 0.05). No associations were between BCS selecting and the other variables studied. The most frequent reasons for selecting BCS were keeping the female shape and improving quality of life (71%), the second most were postoperative recovery, minimal influence of physical function (47%) and patients’ knowledge about BCS (42%). The most frequent reasons for not selecting BCS were uncertainty about BCS results and worry about recurrence (81%), the second most was the elderly age unnecessary for BCS (40%).
Conclusions:
The findings indicate that breast cancer patients in West China do not take BCS as the first choice as the best treatment method. It is warranted that further study of more patients, attitude of patients’ partners and physicians to BCS.
To explore whether different polyvinylpyrrolidone (PVP) concentrations affect the results of intracytoplasmic sperm injection (ICSI), a prospective study was conducted for 194 couples undergoing 210 ICSI therapy cycles. These cycles were divided into three groups (10, 7 and 5% groups) using the corresponding concentration of PVP for sperm immobilization. The main outcome measures were analyzed. Results indicated that, with a decrease in PVP concentrations, all of the main outcome measures increased. In particular, the high-quality cleavage embryo rate in the 7% group was significantly lower than in the 5% group (P < 0.01), and the cleavage, high-quality cleavage embryo, and high-quality blastocyst rates in the 5% group were significantly higher than those in the 10% group (all P < 0.001). For high-/intermediate-quality semen, all of the main outcome measures were significantly increased with 5% PVP. For the poor-quality semen, only the high-quality cleavage embryo and high-quality blastocyst rates were significantly higher in the 5% group. Therefore, lowering PVP concentrations greatly promoted the development of embryos in ICSI cycles, with an optimal concentration of 5% for ICSI.
The present study was conducted to evaluate the effects of glucose, soya oil or glutamine on jejunal morphology, protein metabolism and protein expression of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway in jejunal villus or crypt compartment of piglets. Forty-two 21 d-weaned piglets were randomly allotted to one of the three isoenergetic diets formulated with glucose, soya oil or glutamine for 28 d. On day 14 or 28, the proteins in crypt enterocytes were analysed with isobaric tags for relative and absolute quantification and proteins involved in mTORC1 signalling pathway in villus or crypt compartment cells were determined by Western blotting. Our results showed no significant differences (P > 0·05) in jejunal morphology among the three treatments on day 14 or 28. The differentially expressed proteins mainly took part in a few network pathways, including antimicrobial or inflammatory response, cell death and survival, digestive system development and function and carbohydrate metabolism. On day 14 or 28, there were higher protein expression of eukaryotic initiation factor-4E binding protein-1 in jejunal crypt compartment of piglets supplemented with glucose or glutamine compared with soya oil. On day 28, higher protein expression of phosphor-mTOR in crypt compartment was observed in piglets supplemented with glucose compared with the soya oil. In conclusion, the isoenergetic glucose, soya oil or glutamine did not affect the jejunal morphology of piglets; however, they had different effects on the protein metabolism in crypt compartment. Compared with soya oil, glucose or glutamine may be better energy supplies for enterocytes in jejunal crypt compartment.
We propose and analyse an age-structured model for within-host HIV virus dynamics which is incorporated with both virus-to-cell and cell-to-cell infection routes, and proliferations of both uninfected and infected cells in the form of logistic growth. The model turns out to be a hybrid system with two differential-integral equations and one first-order partial differential equation. We perform some rigorous analyses for the considered model. Among the interesting dynamical behaviours of the model is the occurrence of backward bifurcation in terms of the basic reproduction number R0 at R0 = 1, which raises new challenges for effective infection control. We also discuss the cause of such a backward bifurcation, based on our analytical results.
The intercalation of Tb(III) into layered magadiite is achieved by three-step ion exchanges with H+/Na+, TBA+ (tetra-n-butylammonium ions)/H+ and Tb(EDTA)3+/TBA+. Various techniques, including powder X-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive X-ray (SEM-EDX), thermogravimetric and differential thermogravimetry (TG-DTG), Fourier transform infrared (FTIR) spectroscopy, and photoluminescent spectroscopy (PL), were employed to characterize the Tb-intercalated magadiites. The XRD results revealed that the basal spacing of the Tb-intercalated magadiites was obviously larger than that of the Na-magadiite, confirming the intercalation. The IR spectra showed no bands attributable to EDTA in the Tb-intercalated magadiites, indicating that the EDTA has broken away from Tb(III)-ETDA complexes during ion exchange. Moreover, the basal spacing of Tb-intercalated magadiite tends to increase slightly with the increase in water content in the Tb-intercalated magadiite. The PL spectra show weak emissions, attributed to 5D4-7FJ (J = 3, 4, 5, 6) transitions of Tb3+.
Semisolid forging is a type of semisolid metal processing with high solid fraction. However, the presence of nanosized particles has strong influences on flow behavior of the composites in the semisolid forging process. In this study, the compression deformation behavior of nanosized Al2O3 particles (Al2O3np) reinforced 7075 aluminum matrix composites with high solid fraction was investigated by conducting semisolid isothermal compression experiment. The microstructures after semisolid compression were characterized. The results showed that the true stress decreased with the increase of the deformation temperature and size of Al2O3np, the decrease of the strain rate and mass fraction of Al2O3np. After semisolid compression, deformation degree in large deformation zone was larger than that in free deformation zone. Besides, the solid grains in large deformation zone showed evidence of having undergone different degrees of plastic deformation under different deformation conditions. Simultaneously, the deformation mechanisms during the semisolid compression process were discussed.
In this paper, the recent studies of laboratory astrophysics with strong magnetic fields in China have been reviewed. On the Shenguang-II laser facility of the National Laboratory on High-Power Lasers and Physics, a laser-driven strong magnetic field up to 200 T has been achieved. The experiment was performed to model the interaction of solar wind with dayside magnetosphere. Also the low beta plasma magnetic reconnection (MR) has been studied. Theoretically, the model has been developed to deal with the atomic structures and processes in strong magnetic field. Also the study of shock wave generation in the magnetized counter-streaming plasmas is introduced.
We report new field observations, zircon U–Pb ages and geochemical data for the discrete members of the Zhaheba ophiolite complex in northeastern Junggar of the Central Asian Orogenic Belt (CAOB) with the aim to understand the accretion process of the eastern Junggar terrane. The zircon age data reveal that the cumulates of the Zhaheba ophiolite crystallized at ~485 Ma while the volcanic sequences erupted at ~400 Ma. Thus, the volcanic sequences are not members of the Zhaheba ophiolite. Chromian spinels from the serpentinite have comparable elemental compositions to those of spinels from MORB-type ophiolites. Similarly, the rift affinity of clinopyroxene and positive zircon εHf(t) (13–20) and mantle δ18O (+5.37‰) values of the cumulates imply that the cumulates crystallized from primitive magmas derived from a depleted mantle source. Elemental and Nd isotopic compositions indicate that the basalts in the Zhaheba area were derived from partial melting of a mantle wedge metasomatized by adakitic melts and/or subduction-related fluids. The data presented in this contribution, together with previous studies, indicate that the Zhaheba–Almantai and Kelameili ophiolites were MORB-type, which implies that there were at least two mid-ocean ridges during Ordovician to early Devonian times in the Junggar Ocean. In the earlier stage, intra-oceanic subduction led to the formation of the intra-oceanic arc, and then the Kelameili ophiolite accreted to an intra-oceanic accretionary wedge. In the later stage, the Zhaheba–Almantai ophiolite accreted to the accretionary wedge along the southern margin of the Iritish suture zone during the roll-back of the subduction zone from north to south.