We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A drag correlation is established for laminar particle-laden flows, based on data from the interfaced-resolved direct numerical simulations (IR-DNS) of particle sedimentation in a periodic domain at density ratio ranging from 2 to 1000, particle concentration ranging from 0.59 % to 14.16 %, and particle Reynolds number below 132. Our drag decreases slightly with increasing density ratio when the other parameters are fixed. The drag correlation is then corrected to account for the turbulence effect by introducing the relative turbulent kinetic energy, from the IR-DNS data of the upward turbulent channel flows laden with the particles larger than the Kolmogorov length scale at relatively low particle volume fractions. A drift velocity model is developed to obtain the effective slip velocity from the interphase mean velocity difference for the vertical turbulent channel flow by considering the effects of particle inertia, particle concentration distribution and large-scale streamwise vortices.
Listeriosis is a rare but serious foodborne disease caused by Listeria monocytogenes. This matched case–control study (1:1 ratio) aimed to identify the risk factors associated with food consumption and food-handling habits for the occurrence of sporadic listeriosis in Beijing, China. Cases were defined as patients from whom Listeria was isolated, in addition to the presence of symptoms, including fever, bacteraemia, sepsis and other clinical manifestations corresponding to listeriosis, which were reported via the Beijing Foodborne Disease Surveillance System. Basic patient information and possible risk factors associated with food consumption and food-handling habits were collected through face-to-face interviews. One hundred and six cases were enrolled from 1 January 2018 to 31 December 2020, including 52 perinatal cases and 54 non-perinatal cases. In the non-perinatal group, the consumption of Chinese cold dishes increased the risk of infection by 3.43-fold (95% confidence interval 1.27–9.25, χ2 = 5.92, P = 0.02). In the perinatal group, the risk of infection reduced by 95.2% when raw and cooked foods were well-separated (χ2 = 5.11, P = 0.02). These findings provide important scientific evidence for preventing infection by L. monocytogenes and improving the dissemination of advice regarding food safety for vulnerable populations.
Evidence of couples’ BMI and its influence on birth weight is limited and contradictory. Therefore, this study aims to assess the association between couple’s preconception BMI and the risk of small for gestational age (SGA)/large for gestational age (LGA) infant, among over 4·7 million couples in a retrospective cohort study based on the National Free Pre-pregnancy Checkups Project (NFPCP) between December 1, 2013 and November 30, 2016 in China. Among the live births, 256,718 (5·44%) SGA events and 506,495 (10·73%) LGA events were documented, respectively. After adjusting for confounders, underweight men had significantly higher risk [OR 1·17 95%CI (1·15-1·19)] of SGA infants compared with men with normal BMI, while a significant and increased risk of LGA infants was obtained for overweight and obese men [OR 1·08 (95% CI: 1·06-1·09); OR 1·19 (95%CI 1·17-1·20)] respectively. The restricted cubic spline (RCS) result revealed a non-linearly decreasing dose-response relationship of paternal BMI (less than 22·64) with SGA. Meanwhile, a non-linearly increasing dose-response relationship of paternal BMI (more than 22·92) with LGA infants was observed. Moreover, similar results about the association between maternal preconception BMI and SGA/LGA infants were obtained. Abnormal preconception BMIs in either women or men were associated with increased risk of SGA/LGA infants, respectively. Overall, couple’s abnormal weight before pregnancy may be an important preventable risk factor for SGA/LGA infants.
Previous analyses of grey and white matter volumes have reported that schizophrenia is associated with structural changes. Deep learning is a data-driven approach that can capture highly compact hierarchical non-linear relationships among high-dimensional features, and therefore can facilitate the development of clinical tools for making a more accurate and earlier diagnosis of schizophrenia.
Aims
To identify consistent grey matter abnormalities in patients with schizophrenia, 662 people with schizophrenia and 613 healthy controls were recruited from eight centres across China, and the data from these independent sites were used to validate deep-learning classifiers.
Method
We used a prospective image-based meta-analysis of whole-brain voxel-based morphometry. We also automatically differentiated patients with schizophrenia from healthy controls using combined grey matter, white matter and cerebrospinal fluid volumetric features, incorporated a deep neural network approach on an individual basis, and tested the generalisability of the classification models using independent validation sites.
Results
We found that statistically reliable schizophrenia-related grey matter abnormalities primarily occurred in regions that included the superior temporal gyrus extending to the temporal pole, insular cortex, orbital and middle frontal cortices, middle cingulum and thalamus. Evaluated using leave-one-site-out cross-validation, the performance of the classification of schizophrenia achieved by our findings from eight independent research sites were: accuracy, 77.19–85.74%; sensitivity, 75.31–89.29% and area under the receiver operating characteristic curve, 0.797–0.909.
Conclusions
These results suggest that, by using deep-learning techniques, multidimensional neuroanatomical changes in schizophrenia are capable of robustly discriminating patients with schizophrenia from healthy controls, findings which could facilitate clinical diagnosis and treatment in schizophrenia.
Due to less light scattering and a better signal-to-noise ratio in deep imaging, two-photon fluorescence microscopy (TPFM) has been widely used in biomedical photonics since its advent. However, optical aberrations degrade the performance of TPFM in terms of the signal intensity and the imaging depth and therefore restrict its application. Here, we introduce adaptive optics based on the genetic algorithm to detect the distorted wavefront of the excitation laser beam and then perform aberration correction to optimize the performance of TPFM. By using a spatial light modulator as the wavefront controller, the correction phase is obtained through a signal feedback loop and a process of natural selection. The experimental results show that the signal intensity and imaging depth of TPFM are improved after aberration correction. Finally, the method was applied to two-photon fluorescence lifetime imaging, which helps to improve the signal-to-noise ratio and the accuracy of lifetime analysis. Furthermore, the method can also be implemented in other experiments, such as three-photon microscopy, light-sheet microscopy, and super-resolution microscopy.
The efficiency of establishing pig pluripotent embryonic stem cell clones from blastocysts is still low. The transcription factor Nanog plays an important role in maintaining the pluripotency of mouse and human embryonic stem cells. Adequate activation of Nanog has been reported to increase the efficiency of establishing mouse embryonic stem cells from 3.5 day embryos. In mouse, Nanog starts to be strongly expressed as early as the morula stage, whereas in porcine NANOG starts to be strongly expressed by the late blastocyst stage. Therefore, here we investigated both the effect of expressing NANOG on porcine embryos early from the morula stage and the efficiency of porcine pluripotent embryonic stem cell clone formation. Compared with intact porcine embryos, NANOG overexpression induced a lower blastocyst rate, and did not show any advantages for embryo development and pluripotent embryonic stem cell line formation. These results indicated that, although NANOG is important pluripotent factor, NANOG overexpression is unnecessary for the initial formation of porcine pluripotent embryonic stem cell clones in vitro.
Neuroimaging- and machine-learning-based brain-age prediction of schizophrenia is well established. However, the diagnostic significance and the effect of early medication on first-episode schizophrenia remains unclear.
Aims
To explore whether predicted brain age can be used as a biomarker for schizophrenia diagnosis, and the relationship between clinical characteristics and brain-predicted age difference (PAD), and the effects of early medication on predicted brain age.
Method
The predicted model was built on 523 diffusion tensor imaging magnetic resonance imaging scans from healthy controls. First, the brain-PAD of 60 patients with first-episode schizophrenia, 60 healthy controls and 21 follow-up patients from the principal data-set and 40 pairs of individuals in the replication data-set were calculated. Next, the brain-PAD between groups were compared and the correlations between brain-PAD and clinical measurements were analysed.
Results
The patients showed a significant increase in brain-PAD compared with healthy controls. After early medication, the brain-PAD of patients decreased significantly compared with baseline (P < 0.001). The fractional anisotropy value of 31/33 white matter tract features, which related to the brain-PAD scores, had significantly statistical differences before and after measurements (P < 0.05, false discovery rate corrected). Correlation analysis showed that the age gap was negatively associated with the positive score on the Positive and Negative Syndrome Scale in the principal data-set (r = −0.326, P = 0.014).
Conclusions
The brain age of patients with first-episode schizophrenia may be older than their chronological age. Early medication holds promise for improving the patient's brain ageing. Neuroimaging-based brain-age prediction can provide novel insights into the understanding of schizophrenia.
The commercial Computational Fluid Dynamics (CFD) software STAR-CCM+ was used to simulate the flow and breakup characteristics of a Liquid Jet Injected into the gaseous Crossflow (LJIC) under real engine operating conditions. The reasonable calculation domain geometry and flow boundary conditions were obtained based on a civil aviation engine performance model similar to the Leap-1B engine which was developed using the GasTurb software and the preliminary design results of its low-emission combustor. The Volume of Fluid (VOF) model was applied to simulate the breakup feature of the near field of LJIC. The numerical method was validated and calibrated through comparison with the public test data at atmospheric conditions. The results showed that the numerical method can capture most of the jet breakup structure and predict the jet trajectory with an error not exceeding ±5%. The verified numerical method was applied to simulate the breakup of LJIC at the real engine operating condition. The breakup mode of LJIC was shown to be surface shear breakup at elevated condition. The trajectory of the liquid jet showed good agreement with Ragucci’s empirical correlation.
The current study reports the identification of previously undiscovered single-nucleotide polymorphisms (SNPs) in the bovine AGPAT3 gene and further investigates their associations with milk production traits. Our results demonstrate that the major allele C of the SNP g.12264 C > T is positively correlated with test-day milk yield, protein percentage and 305-day milk yield. Importantly, in silico analysis showed that the C/T transition at this locus gives rise to two new transcription factor binding sites (TFBS), E2F1 and Nkx3-2. Polymorphism g.18658 G > A was the only SNP associated with milk urea nitrogen (MUN) with the G allele related to an increase in milk urea nitrogen as well as fat percentage. The GG genotype of SNP g.28731 A > G was associated with the highest fat and protein percentage and lowest 305-day milk yield and somatic cell score (SCS). The association between AGPAT3 locus and milk production traits could be utilized in marker-assisted selection for the genetic improvement of milk production traits and, probably in conjunction with other traits, for selection to improve fitness of dairy cattle.
Quaternary selenide, Pb4In2.6Bi3.4Se13 (x = 2.4 member of the Pb4(InxBi6-xSe13 solid solution), was synthesized by a solid-state technique, and its structure was determined using powder X-ray diffraction (XRD). Pb4In2.6Bi3.4Se13 crystallizes in the orthorhombic space group Pbam (No. 55) with Z = 4. Lattice parameters and calculated density were determined to be a = 22.152(5) Å, b = 27.454(5) Å, and c = 4.1354(6) Å, V = 2515.0(11) Å3, and Dx = 7.490 g cm−3. The structure consists of Z-shaped ribbon units and corner-shared infinite one-dimensional [InSe4]∞ chains running parallel to the c-axis. The chains and ribbons are further connected by Pb atoms to form a three-dimensional network. Pb atoms are situated in the center of bicapped trigonal prisms. The compound exhibits a semiconductor feature. The Seebeck coefficient of Pb4In2.6Bi3.4Se13 was found to be −180 μV K−1 at 295 K and −380 μV K−1 at 600 K. Combining the values of Seebeck coefficient, electrical conductivity, and thermal conductivity yield a figure of merit, ZT, of about 0.175 at 700 K. The powder XRD pattern of Pb4In2.6Bi3.4Se13 was also determined.
The density–depth relationship of the Antarctic ice sheet is important for establishing a high-precision surface mass balance model and predicting future ice-sheet contributions to global sea levels. A new algorithm is used to reconstruct firn density and densification rate by inverting monostatic radio wave echoes from ground-operated frequency-modulated continuous wave radar data collected near four ice cores along the transect from Zhongshan Station to Dome A. The inverted density profile is consistent with the core data within 5.54% root mean square error. Due to snow redistribution, the densification rate within 88 km of ice core DT401 is correlated with the accumulation rate and varies greatly over horizontal distances of <5 km. That is, the depth at which a critical density of 830 kg m−3 is reached decreases and densification rate increases in high-accumulation regions but decreases in low-accumulation regions. This inversion technique can be used to analyse more Antarctic radar data and obtain the density distribution trend, which can improve the accuracy of mass-balance estimations.
This article discusses the stochastic behavior and reliability properties for the inactivity times of failed components in coherent systems under double monitoring. A mixture representation of reliability function is obtained for the inactivity times of failed components, and some stochastic comparison results are also established. Furthermore, some sufficient conditions are developed in terms of the aging properties of the inactivity times of failed components. Finally, some numerical examples are presented to illustrate the theoretical results.
To establish optimal gestational weight gain (GWG) in Chinese pregnant women by Chinese-specific BMI categories and compare the new recommendations with the Institute of Medicine (IOM) 2009 guidelines.
Design:
Multicentre, prospective cohort study. Unconditional logistic regression analysis was used to evaluate the OR, 95 % CI and the predicted probabilities of adverse pregnancy outcomes. The optimal GWG range was defined as the range that did not exceed a 1 % increase from the lowest predicted probability in each pre-pregnancy BMI group.
Setting:
From nine cities in mainland China.
Participants:
A total of 3731 women with singleton pregnancy were recruited from April 2013 to December 2014.
Results:
The optimal GWG (ranges) by Chinese-specific BMI was 15·0 (12·8–17·1), 14·2 (12·1–16·4) and 12·6 (10·4–14·9) kg for underweight, normal weight and overweight pregnant women, respectively. Inappropriate GWG was associated with several adverse pregnancy outcomes. Compared with women gaining weight within our proposed recommendations, women with excessive GWG had higher risk for macrosomia, large for gestational age and caesarean section, whereas those with inadequate GWG had higher risk for low birth weight, small for gestational age and preterm delivery. The comparison between our proposed recommendations and IOM 2009 guidelines showed that our recommendations were comparable with the IOM 2009 guidelines and could well predict the risk of several adverse pregnancy outcomes.
Conclusions:
Inappropriate GWG was associated with higher risk of several adverse pregnancy outcomes. Optimal GWG recommendations proposed in the present study could be applied to Chinese pregnant women.
Echinococcus shiquicus is currently limited to the Qinghai–Tibet plateau, a large mountainous region in China. Although the zoonotic potential remains unknown, progress is being made on the distribution and intermediate host range. In this study, we report E. shiquicus within Gansu and Qinghai provinces in regions located not only around the central areas but also the southeast edge of the plateau and describe their genetic relationship with previous isolates from the plateau. From 1879 plateau pikas examined, 2.39% (95% CI 1.79–3.18) were infected with E. shiquicus. The highest prevalence of 10.26% (4.06–23.58) was recorded in Makehe town, Qinghai province. Overall the prevalence was marginally higher in Qinghai (2.5%, CI 1.82–3.43) than in Gansu (2%, CI 1.02–3.89). The cox1 and nad1 genes demonstrated high and low haplotype and nucleotide diversities, respectively. The median-joining network constructed by the cox1–nad1 gene sequences demonstrated a star-like configuration with a median vector (unsampled haplotype) occupying the centre of the network. No peculiar distinction or common haplotype was observed in isolates originating from the different provinces. The presence of E. shiquicus in regions of the southeast and northeast edges of the Qinghai–Tibet plateau and high genetic variation warrants more investigation into the haplotype distribution and genetic polymorphism by exploring more informative DNA regions of the mitochondrial genome to provide epidemiologically useful insight into the population structure of E. shiquicus across the plateau and its axis.
It has been recognized that, generally, large particles enhance the turbulence intensity, while small particles attenuate the turbulence intensity. However, there has been no consensus on the quantitative criterion for particle-induced turbulence enhancement or attenuation. In the present study, interface-resolved direct numerical simulations of particle-laden turbulent flows in an upward vertical channel are performed with a direct forcing/fictitious domain method to establish a criterion for turbulence enhancement or attenuation. The effects of the particle Reynolds number ($Re_p$), the bulk Reynolds number ($Re_b$), the particle size, the density ratio and the particle volume fraction on the turbulence intensity are examined at $Re_b=5746$ (i.e. $Re_\tau =180.8$) and 12 000 ($Re_\tau =345.9$), the ratio of the particle radius to the half channel width $a/H=0.05\text {--}0.15$, the density ratio 2–100, the particle volume fraction $0.3\,\%$–$2.36\,\%$ and $Re_p < 227$. Our results indicate that at low $Re_p$ the turbulent intensity across the channel is all diminished; at intermediate $Re_p$ the turbulent intensity is enhanced in the channel centre region and attenuated in the near-wall region; and at sufficiently large $Re_p$ the turbulent intensity is enhanced across the channel. The critical $Re_p$ increases with increasing bulk Reynolds number, particle size and particle–fluid density ratio, while increasing with decreasing particle volume fraction, particularly for the channel centre region. Criteria for enhancement or attenuation are provided for the total turbulence intensity in the channel and the turbulence intensity at the channel centre, respectively, and both are shown to agree well with the experimental data in the literature. The reason for the dependence of the critical particle Reynolds number on the other parameters is discussed.
We aim to determine the correlation between parental rearing, personality traits, and obsessive–compulsive disorder (OCD) in different quantiles. In particular, we created an intermediary effect model in which parental rearing affects OCD through personality traits. All predictors were measured at the time of the survey, comprising parental rearing (paternal rearing and maternal rearing), demographics (grade and gender), and personality traits (neuroticism, extroversion, and psychoticism). These results suggest that (a) paternal emotional warmth was negatively correlated with OCD at the 0.40–0.80 quantile, while maternal emotional warmth was positively correlated with the OCD at the 0.45–0.69 quantile. (b) The correlation between negative parental rearing and OCD ranged from the 0.67 to 0.95 quantile for paternal punishment, 0.14–0.82 quantile for paternal overprotection, 0.05–0.36 and >0.50 quantile for maternal over-intervention and overprotection, and 0.08–0.88 quantile for maternal rejection. (c) Extroversion, neuroticism, and psychoticism were not only associated with OCD in a particular quantile but also mediated between parental rearing (namely parental emotional warmth, paternal punishment, paternal overprotection, maternal rejection, maternal over-intervention, and overprotection) and OCD. These findings provide targets for early interventions of OCD to improve the form of family education and personality traits and warrant validation.
We numerically and experimentally investigate the multi-pulsing mechanism in a dispersion-managed mode-locked Yb-doped fiber laser. Multi-pulsing occurs primarily owing to the inherent filtering effect of the chirped fiber Bragg grating. The spectral filtering effect restricts the spectral broadening induced by self-phase modulation and causes extra loss, leading to a decreased pump power threshold for the multi-pulsing state. Numerical simulations show that multi-pulsing emerges at a lower pump power when the spectral filter bandwidth becomes narrower. In the experiment, the spectral width increases as the net cavity dispersion approaches zero. Pulses with wider spectral widths experience more loss from the spectral filtering effect, leading to a decreased pump power threshold for multi-pulsing. Therefore, the net cavity dispersion also has an impact on the multi-pulsing threshold. Based on this conclusion, we devise a strategy to obtain single-pulsing operation with the shortest pulse width and the highest pulse energy.
Oracle bone script developed into a sophisticated writing system in Shang Dynasty of China more than 3000 years ago. The systematic scientific dating of oracle bones had not been previously reported. Here we present radiocarbon (14C) dates measured from the sequential samples of oracle bones that pertain to the Shang kings. The results indicate that King Wu Ding (who is called Wu Ting in some literature) reigned during 1254 BC to 1197 BC, and the Shang Dynasty terminated around 1041 BC. It also points that the Li group in the sequence of oracle bones is most probably related to the time of King Wu Ding and Zu Geng.