We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Background: This is a population-based retrospective study of cardiac and neurological complications of COVID-19 among Ontario Chinese and South Asians. Methods: From January 1, 2020 to September 30, 2020 using the last name algorithm to identify Ontario Chinese and South Asians who were tested positive by PCR for COVID-19, their demographics, cardiac, and neurological complications including hospitalization and emergency visit rates were analyzed compared to the general population. Results: Chinese (N = 1,186) with COVID-19 were found to be older (mean age 50.7 years) compared to the general population (N = 42,547) (mean age 47.6 years) (p < 0.001), while South Asians (N = 3,459) were younger (age of 42.1 years) (p < 0.001). For neurological complications, the 30-day crude rate for Chinese was 160/10,000 (p < 0.001); South Asians was 40/10,000 (p = 0.526), and general population was 48/10,000. The 30-day all-cause mortality rate was significantly higher for Chinese at 8.1% vs 5.0% for the general population (p < 0.001), while it was lower in South Asians at 2.1% (p < 0.001). Conclusions: Chinese and South Asians in Ontario with COVID-19 during the first wave of the pandemic were found to have a significant difference in their demographics, cardiac, and neurological outcomes.
Background: This is a population-based retrospective study of neurological and cardiac complications of COVID-19 among Ontario visible minorities: Chinese and South Asian Canadians Methods: From January 1, 2020 to September 30, 2020, using the last name algorithm, rates and types of cardiac and neurological complication of these two cohorts along with the general population in Ontario with COVID-19 were analysed by Institue of Clinical Evaluative Sciences. Results: Preliminary results show that Chinese-Canadians (N= 1,186) with COVID-19 are older with a mean age of 50.74 years old compared to general population (N= 42,547) of 47.57 years old (P< .001), while South Asians (N= 3,459) have a younger mean age of 42.08 years old (P< .001). Total cardiac and neurological complication rates, hospitalization rates and ICU admission rates are all higher for Chinese-Canadians while they are lower in South Asians and all achieving statistical significance (P < .001). Overall mortality rate is significantly higher for Chinese-Canadians at 8.1% vs 5.0% general population (P < .001). Conclusions: Chinese-Canadians with COVID-19 in Ontario were much older and have higher cardiac and neurological complication rates and overall mortality rate than the general population. These data have significant implications for proper prevention and appropriate management for these vulnerble elderly Chinese-Canadians.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
In this article, Si nanoparticle (NP) films were prepared by pulsed laser ablation (PLA) in the argon atmosphere of 10 Pa at room temperature under different pulse repetition rates from 1 to 40 Hz without the baffle. Different from the conventional PLA method, the substrates were placed below and parallel to the ablated plume axis. The obtained films containing NPs were characterized by scanning electron microscopy and Raman spectrometer. The experimental results under constant laser fluence demonstrate the strong dependence of the mean size and the area number density of NPs on the repetition rate. Specifically, with the increase of pulse repetition rate, the mean size of the NPs in the film first decreases and reaches its minimum at 20 Hz, and then increases after 20 Hz, and decreases again till 40 Hz. The area number density shows the contrary trend versus mean size. The in situ diagnostic results of Langmuir probe denote the ablated Si ion density increases monotonously with the increase of repetition rate, while the temperature is almost constant. Combining with the nucleation probability, the growth/aggregation duration of NPs in the “nucleation region” and the effect of the baffle, the influence of pulse repetition rate on the formation of NPs is addressed. It is found that the repetition rate impacts the growth modes of NPs (i.e., growth and aggregation). 1–20, 20–30, and 30–40 Hz, respectively, correspond to growth-, aggregation-, and growth-controlled rate ranges without the baffle; however, 1–10, 10–20, and 20–40 Hz, respectively, correspond to growth-controlled, aggregation/growth-coexisted, and aggregation-controlled rate ranges with the baffle.
Viral pneumonia is an important cause of death and morbidity among infants worldwide. Transmission of non-influenza respiratory viruses in households can inform preventative interventions and has not been well-characterised in South Asia. From April 2011 to April 2012, household members of pregnant women enrolled in a randomised trial of influenza vaccine in rural Nepal were surveyed weekly for respiratory illness until 180 days after birth. Nasal swabs were tested by polymerase chain reaction for respiratory viruses in symptomatic individuals. A transmission event was defined as a secondary case of the same virus within 14 days of initial infection within a household. From 555 households, 825 initial viral illness episodes occurred, resulting in 79 transmission events. The overall incidence of transmission was 1.14 events per 100 person-weeks. Risk of transmission incidence was associated with an index case age 1–4 years (incidence rate ratio (IRR) 2.35; 95% confidence interval (CI) 1.40–3.96), coinfection as initial infection (IRR 1.94; 95% CI 1.05–3.61) and no electricity in household (IRR 2.70; 95% CI 1.41–5.00). Preventive interventions targeting preschool-age children in households in resource-limited settings may decrease the risk of transmission to vulnerable household members, such as young infants.
Abnormal effort-based decision-making represents a potential mechanism underlying motivational deficits (amotivation) in psychotic disorders. Previous research identified effort allocation impairment in chronic schizophrenia and focused mostly on physical effort modality. No study has investigated cognitive effort allocation in first-episode psychosis (FEP).
Method
Cognitive effort allocation was examined in 40 FEP patients and 44 demographically-matched healthy controls, using Cognitive Effort-Discounting (COGED) paradigm which quantified participants’ willingness to expend cognitive effort in terms of explicit, continuous discounting of monetary rewards based on parametrically-varied cognitive demands (levels N of N-back task). Relationship between reward-discounting and amotivation was investigated. Group differences in reward-magnitude and effort-cost sensitivity, and differential associations of these sensitivity indices with amotivation were explored.
Results
Patients displayed significantly greater reward-discounting than controls. In particular, such discounting was most pronounced in patients with high levels of amotivation even when N-back performance and reward base amount were taken into consideration. Moreover, patients exhibited reduced reward-benefit sensitivity and effort-cost sensitivity relative to controls, and that decreased sensitivity to reward-benefit but not effort-cost was correlated with diminished motivation. Reward-discounting and sensitivity indices were generally unrelated to other symptom dimensions, antipsychotic dose and cognitive deficits.
Conclusion
This study provides the first evidence of cognitive effort-based decision-making impairment in FEP, and indicates that decreased effort expenditure is associated with amotivation. Our findings further suggest that abnormal effort allocation and amotivation might primarily be related to blunted reward valuation. Prospective research is required to clarify the utility of effort-based measures in predicting amotivation and functional outcome in FEP.
Better understanding of interplay among symptoms, cognition and functioning in first-episode psychosis (FEP) is crucial to promoting functional recovery. Network analysis is a promising data-driven approach to elucidating complex interactions among psychopathological variables in psychosis, but has not been applied in FEP.
Method
This study employed network analysis to examine inter-relationships among a wide array of variables encompassing psychopathology, premorbid and onset characteristics, cognition, subjective quality-of-life and psychosocial functioning in 323 adult FEP patients in Hong Kong. Graphical Least Absolute Shrinkage and Selection Operator (LASSO) combined with extended Bayesian information criterion (BIC) model selection was used for network construction. Importance of individual nodes in a generated network was quantified by centrality analyses.
Results
Our results showed that amotivation played the most central role and had the strongest associations with other variables in the network, as indexed by node strength. Amotivation and diminished expression displayed differential relationships with other nodes, supporting the validity of two-factor negative symptom structure. Psychosocial functioning was most strongly connected with amotivation and was weakly linked to several other variables. Within cognitive domain, digit span demonstrated the highest centrality and was connected with most of the other cognitive variables. Exploratory analysis revealed no significant gender differences in network structure and global strength.
Conclusion
Our results suggest the pivotal role of amotivation in psychopathology network of FEP and indicate its critical association with psychosocial functioning. Further research is required to verify the clinical significance of diminished motivation on functional outcome in the early course of psychotic illness.
TAOS II is a next-generation occultation survey with the goal of measuring the size distribution of the small end of the Kuiper Belt (objects with diameters 0.5–30 km). Such objects have magnitudes r > 30, and are thus undetectable by direct imaging. The project will operate three telescopes at San Pedro Mártir Observatory in Baja California, México. Each telescope will be equipped with a custom-built camera comprised of a focal-plane array of CMOS imagers. The cameras will be capable of reading out image data from 10,000 stars at a cadence of 20 Hz. The telescopes will monitor the same set of stars simultaneously to search for coincident occultation detections, thus minimising the false-positive rate. This talk described the project, and reported on the progress of the development of the survey infrastructure.
This nationwide population-based cohort study investigated the risk of tuberculosis (TB) in patients with end-stage renal disease (ESRD) and receiving dialysis. The evaluations included 4131 incident ESRD patients receiving dialysis and 16 524 age- and gender-matched controls, recruited between 1998 and 2009. We used Cox proportional hazards regression analysis to measure the association between TB and ESRD. Compared to the controls, the ESRD cohort had a significantly higher risk of TB within 1 year [incident rate ratio (IRR) 4·13], and 1–2 years (IRR 2·12), of occurrence of ESRD. The Cox proportional hazards model revealed that ESRD [hazard ratio (HR) 2·40], age >65 years (HR 2·41), male sex (HR 1·94), diabetes mellitus (HR 1·36), silicosis (HR 7·70) and chronic obstructive pulmonary disease (HR 1·61) are independent risk factors for TB. Patients with ESRD are associated with an increased risk of TB, and should thus be monitored more carefully for TB, especially within 2 years of onset of ESRD.
SXP 1062 is an exceptional case of a young neutron star in a wind-fed high-mass X-ray binary associated with a supernova remnant. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. Theoretical models proposed to explain the properties of SXP 1062 shall be tested with new data.
Background: The Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment Battery (CERAD-NAB) offers information on the clinical diagnosis of Alzheimer's disease (AD) and gives a profile of cognitive functioning. This study explores the effects of age, education and gender on participants' performance on eight subtests in the Chinese-Cantonese version of the CERAD-NAB.
Methods: The original English version of the CERAD-NAB was translated and content-validated into a Chinese-Cantonese version to suit the Hong Kong Chinese population. The battery was administered to 187 healthy volunteers aged 60 to 94 years. Participants were excluded if they had neurological, medical or psychiatric disorders (including dementia). Stepwise multiple linear regression analyses were performed to assess the relative contribution of the demographic variables to the scores on each subtest.
Results: The Cantonese version of CERAD-NAB was shown to have good content validity and excellent inter-rater reliability. Stepwise multiple regression analyses revealed that performances on seven and four out of eight subtests in the CERAD-NAB were significantly influenced by education level and age, respectively. Age and education had significant effects on participants' performance on many tests. Gender also showed a significant effect on one subtest.
Conclusions: The preliminary data will serve as an initial phase for clinical interpretation of the CERAD-NAB for Cantonese-speaking Chinese elders.
We are presently using the Chandra X-ray Observatory to conduct the first systematic X-ray survey of planetary nebulae (PNe) in the solar neighborhood. The Chandra Planetary Nebula Survey (ChanPlaNS) is a 570 ks Chandra Cycle 12 Large Program targeting 21 high-excitation PNe within ~1.5 kpc of Earth. When complete, this survey will provide a suite of new X-ray diagnostics that will inform the study of late stellar evolution, binary star astrophysics, and wind interactions. Among the early results of ChanPlaNS (when combined with archival Chandra data) is a surprisingly high detection rate of relatively hard X-ray emission from CSPNe. Specifically, X-ray point sources are clearly detected in roughly half of the ~30 high-excitation PNe observed thus far by Chandra, and all but one of these X-ray-emitting CSPNe display evidence for a hard (few MK) component in their Chandra spectra. Only the central star of the Dumbbell appears to display “pure” hot blackbody emission from a ~200 kK hot white dwarf photosphere in the X-ray band. Potential explanations for the“excess” hard X-ray emission detected from the other CSPNe include late-type companions (heretofore undetected, in most cases) whose coronae have been rejuvenated by recent interactions with the mass-losing WD progenitor, non-LTE effects in hot white dwarf photospheres, self-shocking variable winds from the central star, and slow (re-)accretion of previously ejected red giant envelope mass.
We have applied the Ion Mobility Spectrometry/Mass Spectrometry (IMS/MS) and
the Atmospheric Pressure Chemical Ionisation/Mass Spectrometry (APCI/MS)
techniques to study the formation of the ions in the positive corona
discharge (CD) in highly purified nitrogen with impurities at 100 ppt level.
The main products observed were H3O+(H2O)n ions (reduced
ion mobility of 2.15 cm2 V-1 s-1). Additionally, we have
observed ions with reduced mobilities 2.42 cm2 V-1 s-1 and 2.30 cm2 V-1 s-1. The intensity of these ions was increasing with
the increasing discharge current. We associated these peaks with
NH4+ and NO+(H2O)n. The formation of these ions
results from trace amounts of O2 and NH3 in nitrogen. The time
evolution of the ions in corona discharge has been studied using the APCI/MS
technique in the time windows ranging from 100 μs to 2 ms. The present
work indicates the ability of the IMS technique equipped with CD ions source
to detect impurities below 100 ppt level.
Co-doped GeO2 ceramic films were prepared via a liquid phase
co-deposition (LPCD) process. The oxide samples were transformed into
Ge1-xCox films (x = 0.75, 3.2 and 11.5%) after annealing under
hydrogen atmosphere. The crystallinity of Ge1-xCox film decreases
with increasing Co content. The Ge1-xCox films are p-type (hole
density 1020 ~ 1021 cm-3). The 3.2% film has higher
electrical conductivity and hole density compared with the other two
samples. The 0.75% film is superparamagnetic at 300 K while the 3.2%
and 11.5% films exhibit blocked superparamagnetic behaviors. Hysteresis
loops can be observed in the magnetization curves of the 3.2 and 11.5%
samples. The observed ferromagnetisms are on only a local (a few nanometers)
scale, which most likely arise from different size and chemical distribution
in every sample.