We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The association between executive dysfunction, brain dysconnectivity, and inflammation is a prominent feature across major psychiatric disorders (MPDs), schizophrenia, bipolar disorder, and major depressive disorder. A dimensional approach is warranted to delineate their mechanistic interplay across MPDs.
Methods
This single site study included a total of 1543 participants (1058 patients and 485 controls). In total, 1169 participants underwent diffusion tensor and resting-state functional magnetic resonance imaging (745 patients and 379 controls completed the Wisconsin Card Sorting Test). Fractional anisotropy (FA) and regional homogeneity (ReHo) assessed structural and functional connectivity, respectively. Pro-inflammatory cytokine levels [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] were obtained in 325 participants using blood samples collected with 24 h of scanning. Group differences were determined for main measures, and correlation and mediation analyses and machine learning prediction modeling were performed.
Results
Executive deficits were associated with decreased FA, increased ReHo, and elevated IL-1β and IL-6 levels across MPDs, compared to controls. FA and ReHo alterations in fronto-limbic-striatal regions contributed to executive deficits. IL-1β mediated the association between FA and cognition, and IL-6 mediated the relationship between ReHo and cognition. Executive cognition was better predicted by both brain connectivity and cytokine measures than either one alone for FA-IL-1β and ReHo-IL-6.
Conclusions
Transdiagnostic associations among brain connectivity, inflammation, and executive cognition exist across MPDs, implicating common neurobiological substrates and mechanisms for executive deficits in MPDs. Further, inflammation-related brain dysconnectivity within fronto-limbic-striatal regions may represent a transdiagnostic dimension underlying executive dysfunction that could be leveraged to advance treatment.
Patients with single ventricle CHD have significant morbidity and healthcare utilisation throughout their lifetime, including non-cardiac hospital admissions. Respiratory viral infections are the main cause of hospitalisation in children, but few data exist for single ventricle patients. We sought to identify how respiratory viral infections impact patients with single ventricle CHD and potential differences between Glenn and Fontan circulation.
Methods:
We conducted a retrospective study of patients seen from 01/01/2011–12/31/2020. We identified patients with a history of single ventricle CHD and Glenn palliation, and a normoxic control group with isolated atrial septal defect requiring surgical closure. We compared viral-related clinical presentations, admissions, and admission characteristics.
Results:
A total of 312 patients were included (182 single ventricle, 130 atrial septal defect). Single ventricle patients were more likely than children with isolated atrial septal defect to be admitted with a respiratory virus (odds ratio 4.15 [2.30–7.46]), but there was no difference in mechanical ventilation or hospital length of stay (p = 0.4709). Single ventricle patients with Glenn circulation were more likely than those with Fontan circulation to present and be admitted (odds ratio 3.25 [1.62–6.52]), but there was no difference in ICU admission, mechanical ventilation, or hospital length of stay (p = 0.1516).
Conclusions:
Respiratory viral infections are prevalent but uncomplicated in patients with single ventricle CHD. Viral-related presentations and admissions are more prevalent during the period of Glenn circulation compared to Fontan circulation; however, rate of mechanical ventilation and hospital length of stay are similar.
We quantified hospital-acquired COVID-19 during the early phases of the pandemic, and we evaluated solely temporal determinations of hospital acquisition.
Design:
Retrospective observational study during early phases of the COVID-19 pandemic, March 1-November 30, 2020. We identified laboratory-detected SARS-CoV-2 from 30 days before admission through discharge. All episodes detected after hospital day 5 were categorized by chart review as community or unlikely hospital-acquired, or possible or probable hospital-acquired.
Setting:
Two acute-care hospitals in Chicago, IL.
Patients:
All hospitalized patients including an inpatient rehabilitation unit.
Interventions:
Each hospital implemented infection-control precautions soon after identifying COVID-19 cases, including patient- and staff-cohorting, universal masking, and restricted visitation policies.
Results:
Among 2,667 patients with SARS-CoV-2, detection before hospital day six was most common (n=2,612; 98%); days 6-14 uncommon (n=43; 1.6%); and, after day 14, rare (n=16; 0.6%). By chart review, most episodes after day 5 were categorized as community-acquired, usually because SARS-CoV-2 had been detected at a prior healthcare facility (68% of cases on days 6-14; 53% of cases after day 14). Incidence for possible and probable hospital-acquired cases, per 10,000 patient-days, was similar for ICU- and non-ICU patients at Hospitals A (1.2 vs 1.3, difference = 0.1; 95% CI, -2.8 to 3.0) and B (2.8 vs 1.2, difference = 1.6; 95% CI, -0.1 to 4.0).
Conclusions:
Most patients were protected by early and sustained application of infection-control precautions, modified to reduce COVID-19 transmission. Using solely temporal criteria to discriminate hospital- vs community-acquisition would have misclassified many “late-onset” SARS-CoV-2 positive episodes.
For the safety problems caused by the limited landing space of the deck during the arresting process of the carrier-based aircraft, a dynamic model of the carrier-based aircraft’s landing and arresting is built. Based on the batch simulation method, the lateral dynamics safety envelope of the aircraft during the arresting was defined, and the dynamic response of the key points in the envelope during the arresting process was investigated. Subsequently, the influence of engine thrust and aircraft quality on the arresting safety envelope was studied based on reasonable safety evaluation indicators, and the safety status envelope of the deck arresting was given. Then, the particular Hamilton-Jacobi partial differential equation is used to obtain the lateral dynamics safety envelope of the carrier-based aircraft in the process of landing and arresting by backward inversion. Results indicate that engine thrust and landing quality have little effect on the yaw angle in the arresting safety boundary during the arresting. Additionally, with the engine thrust and landing quality increase, the maximum safe off-centre distance gradually decreases, and the safety boundary decreases accordingly. During the phase of landing glide, the engine thrust and quality have little effect on the maximum safe eccentric distance. When the engine thrust is increased by 40%, the maximum safe yaw angle is reduced from 0.3°, and the safety boundary is reduced by 4.2%. When the aircraftquality increases by 40%, the maximum safe yaw angle is reduced by 0.4°, and the safety boundary is reduced by 2.8%. The findings of this paper can provide framework for the research on theaircraft-to-carrier dynamic matching characteristics of the carrier-based system, and is of great significance to the research on improving the safety of the carrier-based aircraft landing arresting.
Weapon target allocation (WTA) is an effective method to solve the battlefield fire optimisation problem, which plays an important role in intelligent automated decision-making. We researched the multitarget allocation problem to maximise the attack effectiveness when multiple interceptors cooperatively attack multiple ground targets. Firstly, an effective and reasonable fitness function is established, based on the situation between the interceptors and targets, by comprehensively considering the relative range, relative angle, speed, capture probability and radiation source matching performance and thoroughly evaluating them based on the advantage of the attack effectiveness. Secondly, the optimisation performance of the particle swarm optimisation (PSO) algorithm is adaptively improved. We propose an adaptive simulated annealing-particle swarm optimisation (SA-PSO) algorithm by introducing the simulated annealing algorithm into the adaptive PSO algorithm. The proposed algorithm can enhance the convergence speed and overcome the disadvantage of the PSO algorithm easily falling into a local extreme point. Finally, a simulation example is performed in a scenario where ten interceptors cooperate to attack eight ground targets; comparative experiments are conducted between the adaptive SA-PSO algorithm and PSO algorithm. The simulation results indicate that the proposed adaptive SA-PSO algorithm demonstrates great performance in convergence speed and global optimisation capabilities, and a maximised attack effectiveness can be guaranteed.
The long-distance stable transport of relativistic electron beams (REBs) in plasmas is studied by full three-dimensional particle-in-cell simulations. Theoretical analysis shows that the beam transport is mainly influenced by three transverse instabilities, where the excitation of self-modulation instability, and the suppression of the filamentation instability and the hosing instability are important to realize the beam stable transport. By modulating the transport parameters such as the electron density ratio, the relativistic Lorentz factor, the beam envelopes and the density profiles, the relativistic bunches having a smooth density profile and a length of several plasma wave periods can suppress the beam-plasma instabilities and propagate in plasmas for long distances with small energy losses. The results provide a reference for the research of long-distance and stable transport of REBs, and would be helpful for new particle beam diagnosis technology and space active experiments.
The epidemic of tuberculosis has posed a serious burden in Qinghai province, it is necessary to clarify the epidemiological characteristics and spatial-temporal distribution of TB for future prevention and control measures. We used descriptive epidemiological methods and spatial statistical analysis including spatial correlation and spatial-temporal analysis in this study. Furthermore, we applied an exponential smoothing model for TB epidemiological trend forecasting. Of 43 859 TB cases, the sex ratio was 1.27:1 (M:F), and the average annual TB registered incidence was 70.00/100 000 of 2009–2019. More cases were reported in March and April, and the worst TB stricken regions were the prefectures of Golog and Yushu. High TB registered incidences were seen in males, farmers and herdsmen, Tibetans, or elderly people. 7132 cases were intractable, which were recurrent, drug resistant, or co-infected with other infections. Three likely cases clusters with significant high risk were found by spatial-temporal scan on data of 2009–2019. The exponential smoothing winters' additive model was selected as the best-fitting model to forecast monthly TB cases in the future. This research indicated that TB in Qinghai is still a serious threaten to the local residents' health. Multi-departmental collaboration and funds special for TB treatments and control are still needed, and the exponential smoothing model is promising which could be applied for forecasting of TB epidemic trend in this high-altitude province.
We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.
Frequent freezing injury greatly influences winter wheat production; thus, effective prevention and a command of agricultural production are vital. The freezing injury monitoring method integrated with ‘3S’ (geographic information systems (GIS), global positioning system (GPS) and remote sensing (RS)) technology has an unparalleled advantage. Using HuanJing (HJ)-1A/1B satellite images of a winter wheat field in Shanxi Province, China plus a field survey, crop types and winter wheat planting area were identified through repeated visual interpretations of image information and spatial analyses conducted in GIS. Six vegetation indices were extracted from processed HJ-1A/1B satellite images to determine whether the winter wheat suffered from freezing injury and its degree of severity and recovery, using change vector analysis (CVA), the freeze injury representative vegetation index and the combination of the two methods, respectively. Accuracy of the freezing damage classification results was verified by determining the impact of freezing damage on yield and quantitative analysis. The CVA and the change of normalized difference vegetation index (ΔNDVI) monitoring results were different so a comprehensive analysis of the combination of CVA and ΔNDVI was performed. The area with serious freezing injury covered 0.9% of the total study area, followed by the area of no freezing injury (3.5%), moderate freezing injury (10.2%) and light freezing injury (85.4%). Of the moderate and serious freezing injury areas, 0.2% did not recover; 1.2% of the no freezing injury and light freezing injury areas showed optimal recovery, 15.6% of the light freezing injury and moderate freezing injury areas showed poor recovery, and the remaining areas exhibited general recovery.
This study aimed to investigate the association of nasal nitric oxide and olfactory function.
Method
A cross-sectional study was performed in 117 adults, including 91 patients with chronic rhinosinusitis and 26 healthy controls. Scores on the 22-item Sino-Nasal Outcomes Test, Lund-Mackay scale and Lund-Kennedy scale were recorded to assess severity of disease. All participants were screened for common inhaled and food allergens. Nasal nitric oxide and fractional exhaled nitric oxide testing, acoustic rhinometry and anterior rhinomanometry testing were performed to measure nasal function. The validated Sniffin’ Sticks test battery was used to assess olfactory function.
Results
Higher nasal nitric oxide was an independent protective factor for odour discrimination and odour threshold in participants with chronic rhinosinusitis after adjusting for age, gender, drinking, smoking, 22-item Sino-Nasal Outcomes Test, Lund-Mackay score, Lund-Kennedy score, immunoglobulin E and the second minimal cross-sectional area by acoustic rhinometry. Nasal nitric oxide also showed high discrimination in predicting impaired odour discrimination. In addition, nasal nitric oxide was lower in older participants, those with higher Lund-Mackay or Lund-Kennedy scores and higher with elevated total serum immunoglobulin E concentrations above a threshold of 0.35 kU/l.
Conclusion
Higher nasal nitric oxide is associated with better odour discrimination in chronic rhinosinusitis and is modulated by age, degree of allergy and severity of chronic rhinosinusitis.
Pneumatic launch systems for Unmanned Aerial Vehicles (UAVs), including mechanical and pneumatic systems, are complex and non-linear. They are subjected to system parameters during launch, which leads to difficulty in engineering research analysis. For example, the mismatch between the UAV parameters and the parameter design indices of the launch system as well as the unclear design indices of the launching speed and overload of UAVs have a great impact on launch safety. Considering this situation, some studies are presented in this paper. Taking the pneumatic launch system as a research object, a pneumatic launcher dynamic simulation model is built based on co-simulation considering the coupling characteristics of the mechanical structure and transmission system. Its accuracy was verified by laboratory test results. Based on this model, the paper shows the effects of the key parameters, including the mass of the UAV, cylinder volume, pressure and moment of inertia of the pulley block, on the performance of the dynamic characteristics of the launch process. Then, a method for matching the parameter characteristics between the UAV and launch system based on batch simulation is proposed. The set of matching parameter values of the UAV and launch system that satisfy the launch take-off safety criteria are calculated. Finally, the influence of the system parameters of the launch process on the launch performance was analysed in detail, and the design optimised. Meaningful conclusions were obtained. The analysis method and its results can provide a reference for engineering and theoretical research and development of pneumatic launch systems.
The antipsychotic dosage of Chinese schizophrenia patients has rarely been studied, although nonstandard dosage has impact on prognosis.
Objectives
To describe the dosage of antipsychotics in China routine practice.
Methods
This was a retrospective cohort study using de-identified data from a Chinese mental health hospital. The included patients were adults (≥18 years) with at least one diagnosis of schizophrenia (ICD-10: F20) and one prescription of any antipsychotic between 2014 and 2019. Date of first identified antipsychotic prescription was defined as index date, patients were followed up until last prescription of antipsychotics, end of 2019, or discontinuation (>60 days without antipsychotic prescription), whichever was earliest. Dosage was summarized using defined daily dose (DDD), calculated by cumulative average daily dose (CAD) with a unit of DDDs/day, i.e., total DDDs of all antipsychotics in follow-up period divided by total days of follow-up. CAD was categorized into low (<0.5 DDDs/day), moderate (0.5-1.5 DDDs/day), and high (>1.5 DDDs/day) groups.
Results
13554 patients were included with an average follow-up of 269.9 days. Median CAD was 0.8 DDDs/day (IQR=0.5-1.3), patients with hospitalization during follow-up and used multiple antipsychotics at the same time had larger median CAD, 1.0 DDDs/day and 1.2 DDDs/days, respectively. There were 3245 (23.9%), 7627 (56.3%), and 2682 (19.8%) patients in low, moderate, and high groups, respectively. The median CAD of high dosage group was 2.5 DDDs/day (IQR=1.9-10.5).
Conclusions
CAD of most Chinese schizophrenia patients was low or moderate. Association between CAD and hospitalization and multiple concurrent antipsychotics merit further research.
Therapeutic effect of Qinghuanling on negative symptoms and cognitive function of schizophrenia
Objectives
To evaluate the therapeutic effect of Qinghuanling on cognitive impairment in schizophrenia, and to provide basis for clinical medication.
Methods
24 male patients with schizophrenia were randomly divided into study group and control group. The study group was given quetiapine fumarate combined with Qinghuanling, and the control group was given quetiapine fumarate. The positive and negative symptom scale (PANSS) and adverse event response scale (TESS) were evaluated regularly.
Results
The PANSS score of the study group was significantly lower than the control group from 6th week (64.10 ± 7.64 vs 72.31 ± 11.16; 51.60 ± 7.40 vs 63.23 ± 7.08, P < 0.05). Among them, the score of negative factor in the study group was significantly lower than that in the control group at the end of 6 and 8 weeks (2.16 ± 0.40 vs 2.75 ± 0.38; 1.65 ± 0.42 vs 2.38 ± 0.43, P < 0.01); the score of cognitive factor in the study group was significantly lower than that in the control group at the end of the 8th week (1.87 ± 0.20 vs 2.12 ± 0.27, P < 0.05). Compared with before treatment, PANSS score and symptom cluster factor score of the two groups were significantly decreased from the 2nd weekend to the 8th weekend (P < 0.05).
Conclusions
The combined use of Qinghuanling can significantly improve the therapeutic effect of schizophrenia, especially for the symptom cluster score of negative factors and cognitive factors, with high safety.
Major depressive disorder (MDD) is a severe, disabling condition with unknown etiology. Misdiagnosis is common when clinical symptomology criteria are used solely. Considerable evidence suggests that the upregulation of inflammatory factors and cortisol, and a decrease in neurotrophic factors, are involved in the pathogenesis of MDD.
Objectives
This study explored the application of platforms composed of these serum proteins in the objective diagnosis of MDD.
Methods
Serum samples from all participants including 30 MDD patients and 30 well-matched healthy controls were collected at enrollment, eight serum proteins selected initially according to previous studies were analyzed with ELISA. A logistic regression model with these proteins was built to construct the diagnostic platform for the MDD and the receiver operating characteristic (ROC) curve was used to analyze the diagnostic potential of the model.
Results
Among the eight selected proteins, three (TNF-alpha, IL-6 and IL-1beta) were removed because the measurements in more than 1/3 participants were below the detectable limits of ELISA kits. Forward logistic stepwise regression analysis screened out three serum proteins including BDNF, cortisol and IFN-gamma to build the model. The regression equation was Z = 1/[1 + e−(1.438+0.005(BDNF)-0.049(cortisol)-0.007(IFN-gamma))], and the diagnostic efficacy of thees three proteins-combined achieved an area under the ROC curve of 0.884 with sensitivity of 86.7% and specificity of 83.3%.
Conclusions
The results of this study provided a more reliable method to diagnose MDD, and the combination of serum BDNF, cortisol and IFN-gamma may provide an objective diagnostic platform for MDD.
Depression (MDD) is a serious mental illness, which greatly affects the quality of life of patients. Nowadays, the clinical diagnosis of MDD lacks sufficient objective basis, and the effect of drug treatment is unsatisfactory. Therefore, biomarkers are very important for the risk prediction, classification, diagnosis and prognosis of MDD.
Objectives
Research progress of metabonomics of blood endogenous small molecules in depression
Methods
Metabonomics is a newly developed discipline after genomics and proteomics, and is an important part of system biology. Metabonomics provides a new approach to explore the etiology, mechanism, prognosis and screening potential biomarkers of MDD. Blood contains almost all the small molecule metabolites in the body. The changes of metabolites in blood can represent the changes of metabolites in other body fluids. Moreover, this sample is easy to obtain and has less trauma, so it is the most common biological sample in clinical detection.
Results
At present, there are many studies on the metabonomics of endogenous small molecules in MDD blood, which provides the possibility for further screening of MDD related biomarkers.
Conclusions
In this paper, the research progress of related biomarkers in MDD blood is reviewed.
Active skin-friction reduction in a turbulent boundary layer (TBL) is experimentally studied based on time-periodic blowing through one array of streamwise slits. The control parameters investigated include the blowing amplitude A+ and frequency f+, which, expressed in wall units, range from 0 to 2 and from 0.007 to 0.56, respectively. The maximum local friction reduction downstream of the slits reaches more than 70 %; friction does not fully recover to the state of the natural TBL until 500 wall units behind the slits. A positive net power saving is possible, and 4.01 % is measured with a local friction drag reduction (DR) of 49 %. A detailed analysis based on hot-wire, particle image velocimetry and smoke-wire flow visualization data is performed to understand the physical mechanisms involved. Spectral analysis indicates weakened near-wall large-scale structures. Flow visualizations show stabilized streaky structures and a locally relaminarized flow. Two factors are identified to contribute to the DR. Firstly, the jets from the slits create streamwise vortices in the near-wall region, preventing the formation of near-wall streaks and interrupting the turbulence generation cycle. Secondly, the zero-streamwise-momentum fluid associated with the jets also accounts for the DR. A closed-loop opposing control system is developed, along with an open-loop desynchronized control scheme, to quantify the two contributions. The latter is found to account for 77 % of the DR, whereas the former is responsible for 23 %. An empirical scaling of the DR is also proposed, which provides valuable insight into the TBL control physics.
With the development of China’s economy, China’s aviation market has expanded, and related industries have also developed rapidly. For the long-term development of the industry, many countries and enterprises began to make demand forecasts with different levels for the product market. The same is true for China’s civil aircraft-related industries. There are a variety of predictive models, but not all of them are appropriate for the prediction of civil aircraft market demand. This paper introduces a variety of modelling methods for forecasting models, including time series forecasting models and causal analysis forecasting models. The contribution of our work is the adoption of a new coefficient determination method to establish a variable-weight combination forecasting model, which greatly improves the forecasting accuracy. In addition, we also propose a new and more stable prediction model, the chain prediction model. Simulation prediction is carried out for each model in this work. Through the analysis and comparison of the prediction results, we conclude that the prediction effects of the variable weight combination prediction model and the chain prediction model are superior to those of other single prediction models. The chain prediction model in particular has better performance in medium- and long-term prediction, compared with the other prediction models. Finally, the model is applied to predict the demand of Chinese civil aircraft in the next 20 years, which confirms that the Chinese civil aircraft market will expand in the future.
Manure is a primary source of methane (CH4) emissions into the atmosphere. A large proportion of CH4 from manure is emitted during storage, but this varies with storage methods. In this research, we tested whether covering a manure heap with plastic reduces CH4 emission during a short-term composting process. A static chamber method was used to detect the CH4 emission rate and the change of the physicochemical properties of cattle manure which was stored either uncovered (treatment UNCOVERED) or covered with plastic (treatment COVERED) for 30-day periods during the four seasons? The dry matter content of the COVERED treatment was significantly less than the UNCOVERED treatment (P < 0.01), and the C/N ratio of the COVERED treatment significantly greater than the UNCOVERED treatment (P > 0.05) under high temperature. In the UNCOVERED treatment, average daily methane (CH4) emissions were in the order summer > spring > autumn > winter. CH4 emissions were positively correlated with the temperature (R2 = 0.52, P < 0.01). Compared to the UNCOVERED treatment, the daily average CH4 emission rates from COVERED treatment manure were less in the first 19 days of spring, 13 days of summer, 10 days of autumn and 30 days of winter. In summary, covering the manure pile with plastic reduces the evaporation of water during storage; and in winter, long-term covering with plastic film reduces the CH4 emissions during the storage of manure.
The well-known thermal capillary wave theory, which describes the capillary spectrum of the free surface of a liquid film, does not reveal the transient dynamics of surface waves, e.g. the process through which a smooth surface becomes rough. Here, a Langevin model is proposed that can capture this dynamics, goes beyond the long-wave paradigm which can be inaccurate at the nanoscale, and is validated using molecular dynamics simulations for nanoscale films on both planar and cylindrical substrates. We show that a scaling relation exists for surface roughening of a planar film and the scaling exponents belong to a specific universality class. The capillary spectra of planar films are found to advance towards a static spectrum, with the roughness of the surface $W$ increasing as a power law of time $W\sim t^{1/8}$ before saturation. However, the spectra of an annular film (with outer radius $h_0$) are unbounded for dimensionless wavenumber $qh_0<1$ due to the Rayleigh–Plateau instability.
A multi-agent engagement scenario is considered in which a high-value aircraft launches two defenders to intercept two homing missiles aimed at the aircraft. Under the assumption that all aircrafts have first-order linear dynamic characteristics, a combined multiple-mode adaptive estimation (MMAE) and a two-way cooperative optimal guidance law are proposed for the target–defenders team. Considering the full cooperation of the target and both the two defenders, the two-way cooperative strategies provide the analytical expressions for their optimal control input, enabling the target–defenders team to intercept the missiles with minimal control effort. To successfully intercept the missiles, MMAE is used to identify the guidance laws adopted by the missiles and estimate their states. The simulation results show that the target cooperating with the defenders to perform lure manoeuvres for the missiles can improve the guidance performance of the defenders as well as reduce the control effort of the defenders for intercepting the missiles.