We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study presents observations of coherent modes (CMs) in a spherical tokamak using a microwave interferometer near the midplane. The CMs within the 30–60 kHz frequency range were observed during electron cyclotron resonance heating only, and the frequency of the CMs increased proportionally with the square root of the electron temperature near $R = 0.7m$. Generally, these modes displayed bursting and chirping signatures with strong density rise and fall. Their appearance indicated an increase in the intensity of hard x rays, suggesting a deterioration in energetic electron confinement. Furthermore, the effect of CMs on the intensity of energetic electron-driven whistler waves was observed. They decreased when CMs were present and gradually increased with the decrease in CM intensity. The CMs may influence the intensity of whistler waves by affecting the energetic electron confinement.
Understanding how childhood psychosocial adjustment (CPA) influences later life health outcomes is crucial for developing interventions to mitigate the long-term risk of cardiometabolic diseases (CMDs).
Aims
To investigate the association between CPA and incident CMDs in mid-life, and the mediating roles of educational attainment, smoking habits and depression during young adulthood.
Method
A prospective cohort study utilised data from the 1958 National Child Development Study (NCDS; 1958–2013) and the 1970 British Cohort Study (BCS70; 1970–2018), encompassing 22 012 participants assessed for CPA in childhood, who were subsequently evaluated for educational attainment, smoking habits and depression in young adulthood, followed by assessments for CMDs in mid-life. CPA was assessed using the Bristol Social Adjustment Guides in the NCDS and the Rutter Child Behaviour Scale in the BCS70, with higher scores indicating poorer psychosocial adjustment. The primary outcomes were the mid-life incidences of hypertension, diabetes and obesity.
Results
Compared with children in the lowest tertile for CPA scores, those in the middle tertile had an adjusted odds ratio for hypertension of 0.98 (95% CI 0.90–1.06), whereas those in the highest tertile had an odds ratio of 1.17 (95% CI 1.08–1.26). For diabetes, the corresponding odds ratios (95% CI) were 1.15 (0.98–1.35) and 1.39 (1.19–1.62). For obesity, the corresponding odds ratios (95% CI) were 1.08 (1.00–1.16) and 1.18 (1.09–1.27). These associations were partially mediated by educational attainment (2.4–13.9%) and depression during young adulthood (2.5–14.9%).
Conclusions
Poorer CPA is correlated with the development of hypertension, diabetes and obesity in mid-life. Interventions aimed at improving CPA may help in reducing the burden of these diseases in later life.
The 10-item Montgomery–Åsberg Depression Rating Scale (MADRS) measures different dimensions of depression symptomatology. Digital traits may generate deeper understanding of the MADRS subscales and provide insights about depression symptomatology.
Objectives
To identify digital traits that predict specific MADRS subscales and ascertain which digital traits are important for which MADRS subscales.
Methods
During a Phase II decentralised clinical trial in major depressive disorder (MDD), patients completed the MADRS and used AiCure (LLC, New York, NY, USA), a smartphone application, to complete image description tasks at baseline. Digital measurements identified from the literature as relevant to MDD symptomatology were conducted using audio and video data derived from the image description tasks. Digital measurements included speech (rate, sentiment and first-person singular pronouns), vocal acoustics (intensity, pause fraction and fundamental frequency), facial expressivity (regional facial movement) and head pose (Euclidean and angular head movement). Digital traits analysis involved data pre-processing followed by machine learning (ML) using Elastic Net, Decision Tree, and Random Forest models; model performance was evaluated using 5-fold cross-validation and mean absolute error (MAE). Important digital traits were calculated by percentage change in MAE after permuting a specific variable. Important digital traits for the MADRS Apparent Sadness subscale score were mapped to defined, interpretable domains.
Results
The ML model predictions varied for different MADRS subscales (Table). Overall, Elastic Net and Random Forest models outperformed Decision Tree across all subscales scores other than suicidal thoughts. Half of the literature-based digital traits contributed to the prediction of ≥1 MADRS sadness sub-scale score. The important digital traits for the Apparent Sadness subscale score could be mapped to 4 domains (Figure); this aligned with findings from the literature.
Image:
Image 2:
Conclusions
Digital traits collected from patients with MDD were able to predict certain MADRS subscales better than others.
Funding
Boehringer Ingelheim.
Disclosure of Interest
Z. Zhu Employee of: Boehringer Ingelheim Pharmaceuticals, Inc., Y. Wu Employee of: Boehringer Ingelheim Pharmaceuticals, Inc., J. Seidel Employee of: Boehringer Ingelheim International GmbH, D. Roy Employee of: Boehringer Ingelheim Pharmaceuticals, Inc., E. Salzmann Employee of: Boehringer Ingelheim International GmbH
Recent applications of new innovations in artificial intelligence have brought up questions about how this new technology will change the landscape and practices in a wide range of industries and sectors. This article focuses on the impact of generative large language models on teaching, learning, and academic assessment in political science education by analyzing two novel surveys administered by the discipline’s major professional body, the American Political Science Association. We present the results of these surveys and conclude with recommendations.
A novel excretory–secretory (ES) protein of Trichinella pseudospiralis was produced. A cDNA library was constructed from mRNA of muscle larvae at 30 days post infection (p.i.) and immunoscreened with the antibody against ES products. A clone, designated Tp22-3, contained a cDNA transcript of 815 bp in length with a single open reading frame which encoded 244-amino acids (28407 Da in the estimated molecular mass). A database search revealed that no sequences had a homology to this predicted protein. The recombinant protein was produced in an Escherichia coli expression system. Stage specific expression of this protein was suggested from the following experiments. An antibody against the recombinant protein could stain proteins migrating at about 28 kDa (which is the expected size from the sequence) on Western blotting of crude extracts or ES products from 30 days p.i. muscle larvae, but failed to stain any proteins in crude extracts from newborn larvae or 15 days p.i. muscle larvae. The antibody reacted to the stichocytes of larvae at 30 days p.i., but did not react to 15 days p.i. muscle larvae. The production of an mRNA transcript for Tp22-3 gene was restricted largely to the 30 days p.i. muscle larvae and adult worms.
Recombinant protein was produced from the cDNA library of Trichinella pseudospiralis, which seemed to form part of the excretory–secretory (ES) products. The library was constructed from cDNA of muscle larvae at 1 month post-infection, and immunoscreened with antibody against T. pseudospiralis ES products. A clone, designated Tp21-3, contained a cDNA transcript of 657 bp in length with a single open reading frame, which encoded 172 amino acids (19617 Da in the estimated molecular mass). The predicted amino acid sequence of clone Tp21-3 had a similarity of 76% to that of clone ORF 17.20 (GenBank under accession number U88239) from T. spiralis. The recombinant fusion proteins encoded by clone Tp21-3 were produced in an Escherichia coli expression system and affinity purified. On Western blotting analysis, Tp21-3 recombinant proteins migrated at 40 kDa and reacted to antibody against T. pseudospiralis ES products and T. pseudospiralis-infected sera. Sera were developed against Tp 21-3 recombinant proteins, which reacted to a single band migrating at 21 kDa in crude worm extract and ES products from T. pseudospiralis on Western blotting analysis, and reacted with stichocytes of T. pseudospiralis on immunohistochemical staining.
The nurse cell in the cyst of Trichinella spiralis comprises at least two kinds of cytoplasm, derived from muscle or satellite cells, as indicated by the pattern of staining using regular dye (haematoxylin and eosin, or toluidine blue), alkaline phosphatase (ALP) expression, acid phosphatase (ACP) expression and immunostaining with an anti-intermediate filament protein (desmin or keratin). Muscle cells undergo basophilic changes following a T. spiralis infection and transform to the nurse cells, accompanied by an increase in ACP activity and the disappearance of desmin. Satellite cells are activated, transformed and joined to the nurse cells but remain eosinophilic. The eosinophilic cytoplasm is accompanied by an increase in desmin and ALP expression but not an increase in ACP activity. Differences in the staining results for ALP or ACP suggest that the two kinds of cytoplasm have different functions. Trichinella pseudospiralis infection results in an increase of ACP activity at a later stage than T. spiralis. There is also a difference in the location pattern of ACP in the cyst of T. spiralis compared with T. pseudospiralis. In T. spiralis, ACP is diffused within the cell, but in T. pseudospiralis, ACP distribution is spotty corresponding to the location of the nucleus. Trichinella pseudospiralis infection is accompanied by a slight increase in ALP activity. Activated satellite cells following a T. pseudospiralis infection exhibit an increase in desmin expression. The present study therefore reveals that nurse cell cytoplasm differs between the two Trichinella species and between the two origins of cytoplasm in the cyst of T. spiralis.
A clone, designated as TsTM, was selected from the cDNA library of newborn larvae (NBL) of Trichinella spiralis through immunoscreening against infected sera. The clone contained a cDNA transcript of 855 bp in length with a single open reading frame, which encoded 285-amino acids (33 kDa in the estimated molecular weight). A sequence analysis revealed that the clone TsTM encoded the full-length of tropomyosin gene. The phylogenetic analysis of the tropomyosin gene was in good agreement with the classical taxonomical position of T. spiralis. The fusion proteins encoded by the clone TsTM were produced in an Escherichia coli expression system and affinity purified, and the antibody was raised against the protein for the following studies. The antibody against the fusion protein positively bound to the hypodermal muscle layer in immunolocalization analysis, and the 35 kDa band in crude extracts of muscle larvae but not in excretory and secretory (ES) products on Western blots. The antigenicity of the clone TsTM was recognized by host mice but exhibited little species specificity.
This paper proposes a fixed-time anti-saturation (FT-AS) control scheme with a simple control loop for the 6-Degree-of-Freedom tracking (6-DOF) control problem of spacecraft with parameter uncertainties, external disturbances and input saturation. Considering the external disturbance and parameter uncertainties, the dynamical model of the tracking error is established. The traditional methods of handling input saturation usually add anti-saturation subsystems in the control system to suppress the impact of input overshoot. However, this paper directly inputs the input overshoot into the tracking error model, thus constructing a modified lumped disturbance term that includes the influence of input overshoot. Then, a novel fixed-time disturbance observer (FT-DO) is designed to estimate and compensate for this modified lumped disturbance. Therefore, there is no need to add the anti-saturation structures in the control loop, significantly reducing the complexity of the system. Finally, an observer-based fixed-time non-singular terminal sliding mode (FT-NTSM) controller is designed to guarantee the fixed-time stability of the whole system. In this way, the convergence time of the proposed scheme does not depend on the system’s initial conditions. Simulation results illustrate that the proposed method keeps the control input within the limit while achieving high-precision tracking control of attitude and position.
As a major approach for controlling electromagnetic (EM) waves, metamaterials have experienced an abundant and rapid development in the 21st century. They have provided flexible and powerful techniques for controlling EM waves and brought many unique applications that are difficult to realise with natural materials. With increasing demands on dynamic controls of the EM waves, many innovations have been conducted in both three-dimensional metamaterials and two-dimensional metasurfaces, in which the meta-atom has been gradually evolved from passive to active. In 2014, coding and digital mechanisms were initially introduced to the metamaterials, further advancing the appearance of digitally programmable metamaterials. The programmable metamaterials have shown great potentials in not only real-time manipulations of the EM waves, but also direct information processing on the EM wave level. In this article, we present an in-depth review of the programmable EM metamaterials and metasurfaces, focusing on the programmable features including theoretical concepts, implementing methods and applications in EM controls. We first give a short retrospect of traditional metamaterials and metasurfaces, followed by the concepts and detailed discussions of digital coding and field-programmable metamaterials. Then, we introduce space-domain, time-domain and space–time-domain programmable metamaterials and metasurfaces, mainly focusing on their theories, functionalities, experimental implementations, and system-level applications. Finally, we conclude the current advances of the programmable metamaterials and metasurfaces, and give a prospect for the future developments.
An emergent volume electron microscopy technique called cryogenic serial plasma focused ion beam milling scanning electron microscopy (pFIB/SEM) can decipher complex biological structures by building a three-dimensional picture of biological samples at mesoscale resolution. This is achieved by collecting consecutive SEM images after successive rounds of FIB milling that expose a new surface after each milling step. Due to instrumental limitations, some image processing is necessary before 3D visualization and analysis of the data is possible. SEM images are affected by noise, drift, and charging effects, that can make precise 3D reconstruction of biological features difficult. This article presents Okapi-EM, an open-source napari plugin developed to process and analyze cryogenic serial pFIB/SEM images. Okapi-EM enables automated image registration of slices, evaluation of image quality metrics specific to pFIB-SEM imaging, and mitigation of charging artifacts. Implementation of Okapi-EM within the napari framework ensures that the tools are both user- and developer-friendly, through provision of a graphical user interface and access to Python programming.
Worldwide adverse impacts of occupational stressors are timeless concerns to humanity. These impacts not only disrupt mental and health well-being of workers and their families but also impede growth and prosperity of organizations, societies, and nations. In this chapter, we first reviewed to what extent occupational stressors have created burdens on organizations and nations in terms of economic costs (e.g., productivity loss and health care cost) and health outcomes (e.g., morbidity and mortality). After that, we reviewed work-related legislations enacted to address five occupational stressors (i.e., age discrimination, racial discrimination, sex discrimination, sexual harassment, and workplace bullying). To conduct the review, we surveyed these legislations across each continent/ geopolitical region, including Australia, Canada, China, France, Germany, Russia, Singapore, Slovakia, South Africa, South Korea, the UK, and the US. Finally, we summarized the progress of occupational stress research and offered ways of advancing preventive organizational stress management.
The use of home video recordings (HVRs) may aid in the diagnosis of neurological disorders. However, this practice remains underutilized. Through an anonymous survey, we sought to understand the perspectives of healthcare providers regarding the sharing of HVRs alongside referrals for responsive and economical pediatric neurology care. This was timely given COVID-19 has worsened wait times for diagnosis and consequently treatment. Most providers agree that sharing of HVRs improves patient care (93.1%: 67/73) and prevents both additional investigations (67%: 49/73) and hospital admissions (68.5%: 50/73). However, a minority of providers (21.9 %: 16/73) currently share HVRs alongside their referrals.
A survey was carried out to examine the attitudes of veterinarians in Taiwan towards animal welfare issues and current systems related to animal protection. The respondents were asked to express the extent to which they agreed with the importance of the Five Freedoms and relevant education in animal welfare. The survey was sent to 889 veterinarians and the response rate was 34%. According to the findings, veterinarians in Taiwan consider that current animal protection laws in Taiwan, and their relevant systems, are unable to protect animals effectively. They mostly have an uncertain attitude towards the statement that animal welfare can upgrade their professional abilities or enhance their image, in that they have a relative lack of awareness of animal welfare as well as also lacking further understanding of the importance and influence of animal welfare. However, many veterinarians strongly support the content of ‘The Five Freedoms’ and relevant training of animal welfare and ethics. Instead of denying the necessity and importance of the relevant issues, we consider that some veterinarians lack confidence in animal welfare merely because of a lack of relevant training. The results of the survey indicate that providing veterinarians with professional education of animal welfare is the first step which brooks no delay.
Despite the importance of diverse expertise in helping solve difficult interdisciplinary problems, measuring it is challenging and often relies on proxy measures and presumptive correlates of actual knowledge and experience. To address this challenge, we propose a text-based measure that uses researcher’s prior work to estimate their substantive expertise. These expertise estimates are then used to measure team-level expertise diversity by determining similarity or dissimilarity in members’ prior knowledge and skills. Using this measure on 2.8 million team invented patents granted by the US Patent Office, we show evidence of trends in expertise diversity over time and across team sizes, as well as its relationship with the quality and impact of a team’s innovation output.
The pulsed jet is a novel and effective active mixing enhancement approach. For the transverse pulsed jet in the supersonic crossflow, the frequency influence is investigated using the three-dimensional Reynolds-averaged Navier–Stokes (RANS) equations coupled with the SST k-ω turbulence model. The averaged flow field properties of the pulsed jet are better than those of the steady jet when considering mixing efficiency and jet penetration depth, especially for the case with the pulsed frequency being 50kHz. The flow field structures of the pulsed jet are connected with the time, with periodic wave structures generating in the flow field and moving downstream. The size of the wave structures and its distance are related to the frequency, namely the size and flow distance are relatively small at 50kHz, and it takes some time for the pulsed jet to establish its influence in the full flow field. At low frequencies, the flow field produces large fluctuations, and this may be detrimental to the stable operation of the engine.
Based on erosion coupon tests, a sand erosion model for 17-4PH steel was developed. The developed erosion model was validated against the results of compressor erosion tests from a generic rig and from other researchers. A high-fidelity computational fluid dynamics (CFD) model of the test rig was built, a user-defined function was developed to implement the erosion model into the ANSYS CFD software, and the turbulent, two-phase flow-field in multiple reference frames was solved. The simulation results are consistent with the test results from the compressor rig and with experimental findings from other researchers. Specifically, the sand erosion blunts the leading edge, sharpens the trailing edge and increases pressure-surface roughness. The comparisons between the experimental observations and numerical results as well as a quantitative comparison with three other sand erosion models indicate that the developed sand erosion model is adequate for erosion prediction of engine components made of 17-4PH steel.