We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper the Very High Energy (VHE) gamma-ray astronomy program at the University of Adelaide is described. VHE gamma rays with energies above ~5 × 1011eV are observed using the atmospheric Cerenkov technique. Results from the first three years observations at Woomera and the current upgrading of the telecope are described. The CANGAROO project, a collaboration between the University of Adelaide and a number of Japanese institutions, is also introduced.
This study examined whether the occurrence of late neck metastasis in early tongue squamous cell carcinoma can be predicted by evaluating HMGB1 (high mobility group box 1) expression in the primary lesion.
Methods:
A case–control study was conducted. The cases comprised 10 patients with late neck metastasis. The controls consisted of 16 patients without recurrence. All were examined immunohistochemically for HMGB1 protein expression. The odds ratio for late neck metastasis in relation to HMGB1 was estimated.
Results:
Results for HMGB1 were dichotomised into positive staining scores (score, 5–7) and negative scores (0–4). Six cases (60 per cent) and four controls (25 per cent) were HMGB1-positive. Although no significant result was seen, compared with HMGB1-negative patients the odds ratio for late neck metastasis in HMGB1-positive patients was 3.8 (95 per cent confidence interval, 0.6–26.5) after adjusting for other factors.
Conclusion:
In the present study, immunohistochemical study of HMGB1 in early tongue squamous cell carcinoma did not appear to be very useful for predicting occult neck metastasis. Further study is necessary to clarify the relationship between HMGB1 expression and late neck metastasis in early tongue squamous cell carcinoma.
We describe the current, 9-spacecraft Interplanetary Network (IPN). The IPN detects about
325 gamma-ray bursts per year, of which about 100 are not localized by any other missions.
We give some examples of how the data, which are public, can be utilized.
Adenosine triphosphate (ATP) is a well-known energy source for muscle contraction. In this study, to visualize localization of ATP, a luciferin-luciferase reaction (LLR) was performed in mouse skeletal muscle with an “in vivo cryotechnique” (IVCT). First, to confirm if ATP molecules could be trapped and detected after glutaraldehyde (GA) treatment, ATP was directly attached to glass slides with GA, and LLR was performed. The LLR was clearly detected as an intentional design of the ATP attachment. The intensity of the light unit by LLR was correlated with the concentration of the GA-treated ATP in vitro. Next, LLR was evaluated in mouse skeletal muscles with IVCT followed by freeze-substitution fixation (FS) in acetone-containing GA. In such tissue sections the histological structure was well maintained, and the intensity of LLR in areas between muscle fibers and connective tissues was different. Moreover, differences in LLR among muscle fibers were also detected. For the IVCT-FS tissue sections, diaminobenzidine (DAB) reactions were clearly detected in type I muscle fibers and erythrocytes in capillaries, which demonstrated flow shape. Thus, it became possible to perform microscopic evaluation of the numbers of ATP molecules in the mouse skeletal muscles with IVCT, which mostly reflect living states.
A total of 1799 swine sera collected in Toyama prefecture in the central part of Japan during the years 1978–82 were tested for antibody against swine influenza virus (SIV), A/New Jersey/8/76 (H1N1). A high prevalence of antibody was observed in the years after the severe epizootic of SI, 34·5% in 1979 and 51·7% in 1982. In other years, the percentages of positive sera were low and ranged from 1·7 to 12·4%. Regional variations were seen in relation to a small scale epizootic. No antibody to SIV was detected in any of the sera collected during the warm season. In the following dry and cold winter, however, a severe epizootic occurred among the swine populations.
Legionnaires' disease (LD) is a major cause of severe community-acquired pneumonia but the source and mode of transmission are not always apparent, especially in sporadic cases. We hypothesized that LD can be acquired from the air-conditioning systems of motor cars. Swabs were taken from the evaporator compartments of the air-conditioning system of scrapped cars. Healthy subjects who were mainly employees of regional transportation companies were tested for antibody to Legionella pneumophila serogroups 1–6; they also completed a questionnaire. Legionella species were detected in 11/22 scrapped cars by the loop-mediated isothermal amplification method. The prevalence of microplate agglutination titres ⩾1:32 was significantly higher in subjects who sometimes used car air-conditioning systems. Although we did not prove a direct link between Legionella spp. in the car evaporator and LD, our findings point to a potential risk of car air-conditioning systems in LD, which needs further investigation.
The genealogy and diversity of the mitochondrial cytochrome oxidase subunit II (COII) gene were investigated for Ostrinia furnacalis in Japan. A preliminary examination of mitochondrial lineages in China and the Philippines was also made. Two lineages (A and B) were found in the COII gene. Lineage A was frequent throughout the Japanese main islands (Hokkaido, Honshu, Shikoku and Kyushu), while the frequency of lineage B varied among these islands. No clear patterns of geographical population structure were found. Population genetic features suggested that the O. furnacalis population harboring the lineage A mitochondria expanded in the recent past, while lineage B showed weak signals of a population expansion. It is not clear whether the two lineages of mtDNA evolved in separate or identical geographical regions. We discuss two hypotheses regarding the two lineages of mtDNA: a cryptic race/species hypothesis and a selective sweep hypothesis.
The Ostrinia latipennis group contains two species, O. latipennis (Warren) and O. ovalipennis Ohno. These two species commonly utilize perennial knotweeds (Fallopia spp.) as their host plants, which are serious invasive weeds in Europe and North America. Ostrinia latipennis is widely distributed across north-east Asia including Japan whereas O. ovalipennis is restricted to north Japan (Hokkaido Is.) and highland areas of central Japan (Nagano Prefecture in Honshu Is.). To estimate the phylogenetic relatedness and geographical differentiation of the two species, mitochondrial COII gene sequences were determined for specimens covering their distribution ranges in Japan. The uncorrected sequence divergence between O. latipennis and O. ovalipennis was 0.6–0.7%, supporting a close relationship. According to the standard molecular clock proposed for arthropod mtDNA, the two species are speculated to have diverged about 0.3 Myr ago. A single COII gene haplotype was found in O. latipennis irrespective of collection locality. In contrast, two haplotypes were found in O. ovalipennis, and their frequencies were significantly different between the Hokkaido and Honshu populations. The patterns of geographical variation in the COII gene within the two species were in agreement with previously reported patterns of geographical differentiation in morphology of the two species in Japan. The present results support the hypothesis that gene flow among local populations of O. ovalipennis has been limited by geographical isolation.
We have measured the growth rate of silicon nanowires (SiNWs) in the diameter range of 3 to 40 nm (8.4 nm on average), which were grown by chemical vapor deposition (CVD) at temperatures between 365 °C and 495 °C. It is found that SiNWs with smaller diameters grow slower than those with larger ones, and a critical diameter at which growth stops completely exists. The growth rate of the thinner SiNWs stronger depends on growth temperature than that of thicker ones in previous studies. We discuss the dependence by thermodynamics theory.
High quality quantum wire (QWR) structures with an emitting wavelength in the 1.5-μm range were self-organized in an In0.65Ga0.35As/In0.52Al0.48As quantum well layer grown on a (775)B-oriented InP substrate by molecular beam epitaxy. Photoluminescence (PL) from the (775)B In0.65Ga0.35As/In0.52Al0.48As QWRs with a nominal well width of 4.8 nm was observed at 1.43 μm at 12 K, which corresponds to a PL wavelength of about 1.5 μm at room temperature. The PL peak was considerably polarized along the wire direction with a polarization degree of P [= (I∥ - I⊥) / (I∥ + I] ⊥)] = 0.14, indicating its good one-dimensionality. The FWHM of the PL peak was as small as 17 meV, which is the best value for InGaAs QWRs on InP substrates.
It is well known that hemodynamic factors, such as blood pressure and flow, exert an important influence on native morphology of various animal organs. However, information about the significance of ultrastructures which are revealed by conventional preparation methods has been limited, because routine chemical fixation of cells and tissues takes considerable time, during which their morphology could easily change. Therefore, morphological studies with routine immersion or perfusion fixation have not revealed real ultrastructures of functioning animal organs with normal blood circulation.2 The ultimate goal of morphological study is that all features to be examined should reflect the physiological meaning under investigation. For that purpose, the preservation of cells and tissues in functioning organs is necessary for studies to define their ultrastructures. Most cryotechniques have been based on the use of prior excised tissues. Such small specimens are commonly frozen within several seconds following the excision of the tissues.
It is well known that flowing erythrocytes in blood capillaries were morphologically changing in vivo, as observed by light microscopy. Recently, dynamic morphological changes of flowing mouse erythrocytes in large blood vessels and hepatic sinusoids were demonstrated by scanning (SEM) or transmission (TEM) electron microscopy with our “in vivo cryotechnique”. Moreover, human erythrocyte deformability was already studied under artificially jetting conditions at different pressures by using “in vivo cryotechnique”, followed by freeze-substitution method for SEM. in this study, we have analyzed elemental changes of each human erythrocyte at different jetting pressures by “in vivo cryotechnique” combined with SEM for X-ray microanalysis.
Human blood was collected with heparin-coated syringes, divided into two groups and kept at 4°C and 36°C. They were directly jetted into isopentane-propane cryogen (-193°C) through tubes (21 gauge) at different pressures (0-220mmHg) (Fig.la). The frozen blood samples were freeze-dried (4-6×10-7torr,-95°C,24h) in Eiko FD-3AS apparatus (Eiko Engineering, Japan) (Fig. lb).
We have found that nanoholes are formed on silicon surfaces by the irradiation of electrons whose energy is above 40 keV. We have systematically investigated the size and distribution of nanoholes. In the temperature range from 300 K to 600 K, both the radii of nanohole and the distance of nearest-neighbor nanoholes increase with increasing temperature; the planar density of nanoholes decreased with increasing temperature. The data follow a simple Arrhenius law, suggesting that nanoholes are formed through the diffusion of surface vacancies. The diffusion energy is estimated to be 50 meV. Surface nanoholes are formed even at 4 K at which surface vacancies cannot diffuse thermally, presumably due to athermal diffusion of surface vacancies.
We have developed an apparatus for polarized cathodoluminescence (CL) spectroscopy combined with transmission electron microscopy (TEM), that enables us to obtain simultaneously structural data in higher spatial resolution by TEM and polarized luminescence spectra by CL of the same microscopic area. The polarized-CL/TEM method is very useful to study the optical properties of low-dimensional microstructures in semiconducting materials. We have applied the method to examine the optical property of antiphase boundaries in CuPt-ordered GaInP2 and found, for the first time, the polarized light emission from the APBs whose habit planes are parallel to the (T11) and (1T0) atomic planes.
By employing first-principles total-energy calculations we studied the atomic and chemical structure of NiSi2/Si(001) and CoSi2/Si(001) interfaces that are of great importance in understanding electronic properties, such as the Schottky-barrier height, of metal-silicide/silicon junctions. We found a new structural model that is more stable than previously proposed models of interface structures and well explains existing experimental data. The new interface model consists of sevenfold-coordinated interfacial metals and a 2×1 periodic array of interfacial Si dimers, similar to the Si(001) 2×1 surface reconstruction, reducing the number of dangling bonds.
We have investigated optical properties of straight silicon nanowires by means of in-situ cathodoluminescence spectroscopy in a transmission electron microscope. The nanowires, grown on a Si{111} surface via vapor-liquid-solid growth mechanism, have no structural defects such as kink, and the diameter and growth direction are controlled by varying the growth conditions. We have found that the nanowires emit intense light. These lines have not been observed in other kinds of Si nanostructures such as porous Si.
Background. We examined interleukin-2 (IL-2) related immune pathways in depression to elucidate mechanisms underlying various immunological disturbances associated with depression.
Methods. Subjects comprised 35 unmedicated patients with a major depressive
episode without psychotic features and 36 age- and sex-matched healthy volunteers. The immune parameters examined included the numbers of B and T cells, IL-2 receptor-mediated blastoformation (IL-2R-mediated blastoformation), IL-2 production and expression of the IL-2 receptor α-subunit.
Results. The patients with a severe episode showed significantly lower IL-2R-mediated blastoformation than the controls. There was a statistically significant negative correlation between IL-2R-mediated blastoformation and the severity of depression at the time of entry.
Conclusion. The reduced IL-2R-mediated blastoformation may partly explain several previously reported abnormal immune functions associated with depression.