We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Prior evidence indicates that negative symptom severity and cognitive deficits, in people with schizophrenia (PSZ), relate to measures of reward-seeking and loss-avoidance behavior (implicating the ventral striatum/VS), as well as uncertainty-driven exploration (reliant on rostrolateral prefrontal cortex/rlPFC). While neural correlates of reward-seeking and loss-avoidance have been examined in PSZ, neural correlates of uncertainty-driven exploration have not. Understanding neural correlates of uncertainty-driven exploration is an important next step that could reveal insights to how this mechanism of cognitive and negative symptoms manifest at a neural level.
Methods
We acquired fMRI data from 29 PSZ and 36 controls performing the Temporal Utility Integration decision-making task. Computational analyses estimated parameters corresponding to learning rates for both positive and negative reward prediction errors (RPEs) and the degree to which participates relied on representations of relative uncertainty. Trial-wise estimates of expected value, certainty, and RPEs were generated to model fMRI data.
Results
Behaviorally, PSZ demonstrated reduced reward-seeking behavior compared to controls, and negative symptoms were positively correlated with loss-avoidance behavior. This finding of a bias toward loss avoidance learning in PSZ is consistent with previous work. Surprisingly, neither behavioral measures of exploration nor neural correlates of uncertainty in the rlPFC differed significantly between groups. However, we showed that trial-wise estimates of relative uncertainty in the rlPFC distinguished participants who engaged in exploratory behavior from those who did not. rlPFC activation was positively associated with intellectual function.
Conclusions
These results further elucidate the nature of reinforcement learning and decision-making in PSZ and healthy volunteers.
The three research topics, ship collision risk assessment, ship traffic hotspot detection and prediction, and collision-avoidance based ship path planning, are vital for next-generation vessel traffic management and monitoring systems. The system development is closely related to big data analytics and artificial intelligence for restricted waters. This study, therefore, aims to analyse the state-of-the art of these three topics over the latest decade, identify research gaps, and shed light on future research avenues. To achieve these three objectives, we critically and systematically review related articles that were published during the period between 2011 and 2021. We believe that this comprehensive and critical literature review would have a significant and profound impact on the formal safety assessment and vessel traffic management, and monitoring studies because it is not only an extension but also an essential continuity work of the literature review on maritime waterway risk assessment and prediction, as well as ship path guidance for ship collision risk mitigation in accordance with current automation vessels development and modern intelligent port construction.
In this paper, we mainly study the function spaces related to H-sober spaces. For an irreducible subset system H and
$T_{0}$
spaces X and Y, it is proved that the following three conditions are equivalent: (1) the Scott space
$\Sigma \mathcal O(X)$
of the lattice of all open sets of X is H-sober; (2) for every H-sober space Y, the function space
$\mathbb{C}(X, Y)$
of all continuous mappings from X to Y equipped with the Isbell topology is H-sober; (3) for every H-sober space Y, the Isbell topology on
$\mathbb{C}(X, Y)$
has property S with respect to H. One immediate corollary is that for a
$T_{0}$
space X, Y is a d-space (resp., well-filtered space) iff the function space
$\mathbb{C}(X, Y)$
equipped with the Isbell topology is a d-space (resp., well-filtered space). It is shown that for any
$T_0$
space X for which the Scott space
$\Sigma \mathcal O(X)$
is non-sober, the function space
$\mathbb{C}(X, \Sigma 2)$
equipped with the Isbell topology is not sober. The function spaces
$\mathbb{C}(X, Y)$
equipped with the Scott topology, the compact-open topology and the pointwise convergence topology are also discussed. Our study also leads to a number of questions, whose answers will deepen our understanding of the function spaces related to H-sober spaces.
Avian radar systems are effective for wide-area bird detection and tracking, but application significances need further exploration. Existing radar data mining methods provide long-term functionalities, but they are problematic for bird activity modelling especially in temporal domain. This paper complements this insufficiency by introducing a temporal bird activity extraction and interpretation method. The bird behaviour is quantified as the activity degree which integrates intensity and uncertainty characters with an entropy weighing algorithm. The method is applicable in multiple temporal scales. Historical radar dataset from a system deployed in an airport is adopted for verification. Temporal characters demonstrate good consistency with understandings from local observers and ornithologists. Daily commuting and roosting characters of local birds are well reflected, evening bat activities are also extracted. Night migration activities are demonstrated clearly. Results indicate the proposed method is effective in temporal bird activity modelling and interpretation. Its integration with bird strike risk models might be more useful for airport safety management with wildlife interference.
In this paper, a Pythagorean-Hodograph (PH) curve-based pick-and-place operation trajectory planning method for Delta parallel robots is proposed, which realizes the flexible control of pick-and-place operations to meet the requirements of various practical scenarios. First, according to the geometric relationship of pick-and-place operation path, different pick-and-place operations are classified. Then trajectory planning is carried out for different situations, respectively, and in each case, the different polynomial motion laws adopted by the linear motion segment and the curved motion segment are solved. Trajectory optimization is performed with the motion period as optimization objective. The proposed method is easier to implement, and at the same time satisfies the safety, optimization, mobility, and stability of the robot; that is, the proposed method realizes obstacle avoidance, optimal time, flexible control of the robot trajectory, and stable motion. Simulations and experiments verify the effectiveness of the method proposed in this paper. The proposed method can not only realize the fast, accurate, and safe operation in intelligent manufacturing fields such as rapid classification, palletizing, grasping, warehousing, etc., but its research route can also provide a reference for trajectory planning of intelligent vehicles in logistics system.
This paper examines the attitudes of multinational corporations (MNCs) toward the U.S.-China trade war through an original survey of China-based MNC subsidiaries in the manufacturing industry. Our argument is in two parts. First, firms that have relocated production outside of China or are considering such moves should be less likely to oppose the trade war as they possess outside options that reduce their vulnerability to trade restrictions. Second, firms’ tendency toward production relocation can in turn be explained by their local sourcing dependence, as measured by the level of such dependence and the degree to which their operations require supplier certification. This is because firms more heavily embedded in local supplier networks face stronger resource dependence that increases organizational inertia, reducing their ability to switch to alternative suppliers and therefore relocating production to other destinations. Our findings corroborate our hypotheses, highlighting how the heterogeneity in MNCs’ supply chain relationships may influence both their manufacturing relocation decisions and trade policy preferences.
The Good Chinese Lawyer explores the ethical and professional challenges that will confront a law student, and will help them to prepare for life as a lawyer. The book offers principled and pragmatic advice about how to overcome such challenges. It urges readers to examine motives for seeking a career in law, to foster a deep understanding of what it means to be 'good' lawyer, and how to draw on virtue and judgment when difficult choices arise, rather than simply relying on rushed compliance with rules or codes. The Good Chinese Lawyer analyses four important areas of legal ethics – truth and deception, professional secrets, conflicts of interest, and professional competence – and explains the choices that are available when determining a course of moral action. It links theory to practice, and includes many diagrams and scenarios to illustrate ethical concepts and good decision-making.
Large-eddy simulations of the unsteady flows around rectangular prisms with chord-to-depth ratios (B/D) ranging from 3 to 12 are carried out at a Reynolds number of 1000. A particular focus of the study is the physical mechanisms governing the global instability of the flow. The coherent structures and velocity spectra reveal that large-scale leading-edge vortices (L vortices) are formed by the coalescence of Kelvin–Helmholtz rollers. Based on dynamic mode decomposition, the interactions between the L vortex and the trailing-edge vortex (T vortex) at different B/D values are revealed. It is found that the phase difference between the L and T vortices is the critical factor promoting a stepwise increase in the Strouhal number with increasing B/D. According to the phase analysis, there are two types of pressure feedback-loop mechanisms maintaining the self-sustained oscillations. When B/D = 4–5, the feedback loop covers the separation region, and the global instability is controlled by the impinging shear-layer instability. When B/D = 3 and 6–12, the feedback loop covers the entire chord, and the global instability is controlled by the impinging leading-edge vortex shedding instability. Self-sustained oscillations of the shear layer still exist after a splitter plate is placed in the near wake, indicating that the T vortex shedding is not essential in triggering the global instability. Nevertheless, with the participation of the T vortex, the primary instability mode may be reselected due to the upper and lower limits of the shedding frequency imposed by the T vortex.
State capitalism and the liberal economic order have had an antagonistic relationship. While the international economic law rules have sought to reduce the role of the state in the economy, state-controlled entities have more recently increased in size and importance – both domestically, as well as internationally. In this connection, the article analyses the effects of state capitalism's expansion simultaneously with the domestic investment law of States. The article analyses the underlying principles of state capitalism in an effort to answer the question of whether domestic laws promoting investment – as defined in the special issue – are positive, negative, or neutral to state capitalists. The article further interprets the trends spawned by the propagation of the liberal international economic order as states realize their development targets and envisage to actively contribute to the regulation of international trade and cross-border transactions globally.
Microplastics (MPs) pollution has been a hot research topic in recent years. MPs are ubiquitous throughout the ecological environment and are eventually accumulated in organisms through inhalation or ingestion. However, given that MPs are inert pollutants, their effects on organisms are not clear. In previous study, we have investigated the effects of polyethylene terephthalate MPs on physiology of Drosophila. What is the effect of polypropylene microplastics (PP-MPs)? The results of our experiments show that being exposed to high concentration of PP-MPs have significant effect on Drosophila. PP-MPs exposure can significantly increase locomotor activity and shorten the time of group sleep in Drosophila. In the presence of high concentrations of PP-MPs, the triglyceride content was reduced in females and their ability of egg production was affected. However, there was no significant effect on the level of protein and carbohydrate, or on the food intake. Our experimental results can provide some preliminary data for assessing the potential hazard of PP-MPs to other organisms.
Cognitive behavioural therapy (CBT) and medication are widely accepted and useful interventions for individuals with depression. However, a gap remains in our current understanding of how CBT directly benefits adolescents with depression.
Aims:
The purpose of this study was to examine the short- and long-term effectiveness of CBT only, CBT+Medication, or Medication alone in reducing the duration of major depressive episodes, lessening internalizing and externalizing symptoms and improving global functioning.
Methods:
Data were extracted from 14 unique studies with a total of 35 comparisons. Network meta-analysis was conducted and p-scores, a measure of the extent of certainty that one treatment is better than another, were used to rank treatments.
Results:
There was no significant difference between any two treatments for depression, nor internalizing or externalizing symptoms. For global functioning, CBT had significantly greater effect at the longest follow-up than CBT+Medication. CBT+Medication had the highest p-score for depression, short- and long-term effects, and internalizing and externalizing symptoms long-term effects. No indication of publication bias was found.
Conclusions:
Neither modality, CBT nor medication, is superior for treating adolescent depression. However, CBT was superior in improving global functioning, which is essential for meeting developmental goals.
The invariant Galton–Watson (IGW) tree measures are a one-parameter family of critical Galton–Watson measures invariant with respect to a large class of tree reduction operations. Such operations include the generalized dynamical pruning (also known as hereditary reduction in a real tree setting) that eliminates descendant subtrees according to the value of an arbitrary subtree function that is monotone nondecreasing with respect to an isometry-induced partial tree order. We show that, under a mild regularity condition, the IGW measures are attractors of arbitrary critical Galton–Watson measures with respect to the generalized dynamical pruning. We also derive the distributions of height, length, and size of the IGW trees.
A relation among invariants of filtered velocity gradients with two different filter sizes is derived. Based on this relation and physical reasoning, it is shown analytically that strain self-amplification contributes more to energy transfer than vortex stretching in homogeneous turbulence, as observed in recent numerical investigations of homogeneous isotropic turbulence. We note that the invariant relation studied and hence the inequality between strain self-amplification and vortex stretching apply to all homogeneous flows, not restricted to isotropic turbulence.
In adults with Clostridioides difficile infection (CDI), higher stool concentrations of toxins A and B are associated with severe baseline disease, CDI-attributable severe outcomes, and recurrence. We evaluated whether toxin concentration predicts these presentations in children with CDI.
Methods:
We conducted a prospective cohort study of inpatients aged 2–17 years with CDI who received treatment. Patients were followed for 40 days after diagnosis for severe outcomes (intensive care unit admission, colectomy, or death, categorized as CDI primarily attributable, CDI contributed, or CDI not contributing) and recurrence. Baseline stool toxin A and B concentrations were measured using ultrasensitive single-molecule array assay, and 12 plasma cytokines were measured when blood was available.
Results:
We enrolled 187 pediatric patients (median age, 9.6 years). Patients with severe baseline disease by IDSA-SHEA criteria (n = 34) had nonsignificantly higher median stool toxin A+B concentration than those without severe disease (n = 122; 3,217.2 vs 473.3 pg/mL; P = .08). Median toxin A+B concentration was nonsignificantly higher in children with a primarily attributed severe outcome (n = 4) versus no severe outcome (n = 148; 19,472.6 vs 429.1 pg/mL; P = .301). Recurrence occurred in 17 (9.4%) of 180 patients. Baseline toxin A+B concentration was significantly higher in patients with versus without recurrence: 4,398.8 versus 280.8 pg/mL (P = .024). Plasma granulocyte colony-stimulating factor concentration was significantly higher in CDI patients versus non-CDI diarrhea controls: 165.5 versus 28.5 pg/mL (P < .001).
Conclusions:
Higher baseline stool toxin concentrations are present in children with CDI recurrence. Toxin quantification should be included in CDI treatment trials to evaluate its use in severity assessment and outcome prediction.
This systematic literature review aimed to provide an overview of the characteristics and methods used in studies applying the disability-adjusted life years (DALY) concept for infectious diseases within European Union (EU)/European Economic Area (EEA)/European Free Trade Association (EFTA) countries and the United Kingdom. Electronic databases and grey literature were searched for articles reporting the assessment of DALY and its components. We considered studies in which researchers performed DALY calculations using primary epidemiological data input sources. We screened 3053 studies of which 2948 were excluded and 105 studies met our inclusion criteria. Of these studies, 22 were multi-country and 83 were single-country studies, of which 46 were from the Netherlands. Food- and water-borne diseases were the most frequently studied infectious diseases. Between 2015 and 2022, the number of burden of infectious disease studies was 1.6 times higher compared to that published between 2000 and 2014. Almost all studies (97%) estimated DALYs based on the incidence- and pathogen-based approach and without social weighting functions; however, there was less methodological consensus with regards to the disability weights and life tables that were applied. The number of burden of infectious disease studies undertaken across Europe has increased over time. Development and use of guidelines will promote performing burden of infectious disease studies and facilitate comparability of the results.
Piezoelectric macro-fibre composite (MFC) actuators are employed onto the flexible leeward surface of an airfoil for active control. Time-resolved aerodynamic forces, membrane deformations and flow fields are synchronously measured at low Reynolds number (Re = 6 × 104). Mean aerodynamics show that the actively controlled airfoil can achieve lift-enhancement and drag-reduction simultaneously in the angle of attack range of 10° ≤ α ≤ 14°, where the rigid airfoil encounters stall. The maximum increments of lift and lift-to-drag ratio are 27.1 % and 126 % at the reduced actuation frequency of ${f^ + } = 3.52$. The unsteady coupling features are further analysed at α = 12°, where the maximum lift-enhancement occurs. It is newly discovered that the membrane vibrations and flow fields are locked into half of the actuation frequency when ${f^ + } > 3$. The shift of the dominant vibration mode from bending to inclining is the reason for the novel ‘half-frequency lock-in’ phenomenon. To the fluid–structure interaction, there are three characteristic frequencies for the actively controlled airfoil: $S{t_1} = 0.5{f^ + }$, $S{t_2} = {f^ + }$, and $S{t_3} = 1.5{f^ + }$. Here, St1 and its harmonics (St2, St3) are coupled with the natural frequencies of the leading-edge shear layer, resulting in the generation of multi-scale flow structures and suppression of flow separation. The lift presents comparable dominant frequencies between St1 and St3, which means the instantaneous lift is determined by the flow structures of St1 and St3. The local membrane bulge and dent affect the instantaneous swirl strength of flow structures near the maximum vibration amplitude location, which is the main reason for the variation of instantaneous lift.
This work reports the application of a model-free deep reinforcement learning (DRL) based flow control strategy to suppress perturbations evolving in the one-dimensional linearised Kuramoto–Sivashinsky (KS) equation and two-dimensional boundary layer flows. The former is commonly used to model the disturbance developing in flat-plate boundary layer flows. These flow systems are convectively unstable, being able to amplify the upstream disturbance, and are thus difficult to control. The control action is implemented through a volumetric force at a fixed position, and the control performance is evaluated by the reduction of perturbation amplitude downstream. We first demonstrate the effectiveness of the DRL-based control in the KS system subjected to a random upstream noise. The amplitude of perturbation monitored downstream is reduced significantly, and the learnt policy is shown to be robust to both measurement and external noise. One of our focuses is to place sensors optimally in the DRL control using the gradient-free particle swarm optimisation algorithm. After the optimisation process for different numbers of sensors, a specific eight-sensor placement is found to yield the best control performance. The optimised sensor placement in the KS equation is applied directly to control two-dimensional Blasius boundary layer flows, and can efficiently reduce the downstream perturbation energy. Via flow analyses, the control mechanism found by DRL is the opposition control. Besides, it is found that when the flow instability information is embedded in the reward function of DRL to penalise the instability, the control performance can be further improved in this convectively unstable flow.