We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The high-altitude landscape of western Tibet is one of the most extreme environments in which humans have managed to introduce crop cultivation. To date, only sparse palaeoeconomic data have been reported from this region. The authors present archaeobotanical evidence from five sites (dating from the late first millennium BC and the early first millennium AD) located in the cold-arid landscape of western Tibet. The data indicate that barley was widely grown in this region by c. 400 BC but probably fulfilled differing roles within local ecological constraints on cultivation. Additionally, larger sites are characterised by more diverse crop assemblages than smaller sites, suggesting a role for social diversity in the development of high-altitude agriculture.
Maternal gestational weight gain (GWG) is an important determinant of infant birth weight, and having adequate total GWG has been widely recommended. However, the association of timing of GWG with birth weight remains controversial. We aimed to evaluate this association, especially among women with adequate total GWG. In a prospective cohort study, pregnant women’s weight was routinely measured during pregnancy, and their GWG was calculated for the ten intervals: the first 13, 14–18, 19–23, 24–28, 29–30, 31–32, 33–34, 35–36, 37–38 and 39–40 weeks. Birth weight was measured, and small-for-gestational-age (SGA) and large-for-gestational-age were assessed. Generalized linear and Poisson models were used to evaluate the associations of GWG with birth weight and its outcomes after multivariate adjustment, respectively. Of the 5049 women, increased GWG in the first 30 weeks was associated with increased birth weight for male infants, and increased GWG in the first 28 weeks was associated with increased birth weight for females. Among 1713 women with adequate total GWG, increased GWG percent between 14 and 23 weeks was associated with increased birth weight. Moreover, inadequate GWG between 14 and 23 weeks, compared with the adequate GWG, was associated with an increased risk of SGA (43 (13·7 %) v. 42 (7·2 %); relative risk 1·83, 95 % CI 1·21, 2·76). Timing of GWG may influence infant birth weight differentially, and women with inadequate GWG between 14 and 23 weeks may be at higher risk of delivering SGA infants, despite having adequate total GWG.
Business process management (BPM) has been the main driver behind company optimization and operational efficiency. However, the digitization era we live in necessitates that organizations be agile and adaptable. Delivering unprecedented rates of automation-fueled agility is necessary to be a part of this digital revolution. On the other hand, BPM automation cannot be done only by concentrating on procedure space and traditional planning methodologies. With the introduction of BPM, where the deployment of BPM with cloud computing has undergone enormous development lately, cloud computing has been considered a particularly active topic of study. Cloud computing points to the provision of dependable computing environments based on improved infrastructure availability and service quality without imposing a significant cost load. This research aims to discover the relationship between technical factors, financial factors, environmental factors, security of the cloud-based information systems, and the agile development of industrial BPM (IBPM). The present study aims to fill this gap and show how partial least squares structural equation modeling (SEM) can be employed in this field. Importance–performance map analysis (IPMA) evaluated the importance and performance of factors in the SEM. IPMA enables the identification of factors with relatively low performance but relatively high importance in shaping dependent variables. The empirical findings showed that four key factors (technical, financial, environmental, and security) positively influence the agile development of IBPM.
Due to the lack of research between the inner layers in the structure of colonic mucous and the metabolism of fatty acid in the constipation model, we aim to determine the changes in the mucous phenotype of the colonic glycocalyx and the microbial community structure following treatment with Rhubarb extract in our research. The constipation and treatment models are generated using adult male C57BL/6N mice. We perform light microscopy and transmission electron microscopy (TEM) to detect a Muc2-rich inner mucus layer attached to mice colon under different conditions. In addition, 16S rDNA sequencing is performed to examine the intestinal flora. According to TEM images, we demonstrate that Rhubarb can promote mucin secretion and find direct evidence of dendritic structure-linked mucus structures with its assembly into a lamellar network in a pore size distribution in the isolated colon section. Moreover, the diversity of intestinal flora has noticeable changes in constipated mice. The present study characterizes a dendritic structure and persistent cross-links have significant changes accompanied by the alteration of intestinal flora in feces in models of constipation and pretreatment with Rhubarb extract.
In this paper, effects of discharge parameters and modulation frequency on the signal of laser-induced fluorescence measurements of ion velocity distribution functions are investigated in the LIF Test Source. A maximum modulation frequency is found for each given set of parameters, beyond which the signal gradually declines. Meanwhile, this maximum modulation frequency occurred consistently at ~1/10 of the theoretical frequency limit and photon counts received by a photomultiplier tube, which indicates that as modulation frequency and the associated per-pulse-excitation-event count decrease, the transition from the macroscopic statistical signal to the microscopic probabilistic signal is a gradual process.
This paper presents the response and the wake modes of a freely vibrating D-section prism with varying angles of attack ($\alpha = 0^\circ \text {--}180^\circ$) and reduced velocity ($U^* = 2\text {--}20$) by a numerical investigation. The Reynolds number, based on the effective diameter, is fixed at 100. The vibration of the prism is allowed only in the transverse direction. We found six types of response with increasing angle of attack: typical vortex-induced vibration (VIV) at $\alpha = 0^\circ \text {--}35^\circ$; extended VIV at $\alpha = 40^\circ \text {--}65^\circ$; combined VIV and galloping at $\alpha = 70^\circ \text {--}80^\circ$; narrowed VIV at $\alpha = 85^\circ \text {--}150^\circ$; transition response, from narrowed VIV to pure galloping, at $\alpha = 155^\circ \text {--}160^\circ$; and pure galloping at $\alpha = 165^\circ \text {--}180^\circ$. The typical and narrowed VIVs are characterized by linearly increasing normalized vibration frequency with increasing $U^*$, which is attributed to the stationary separation points of the boundary layer. On the other hand, in the extended VIV, the vortex shedding frequency matches the natural frequency in a large $U^*$ range with increasing $\alpha$ generally. The galloping is characterized by monotonically increasing amplitude with enlarging $U^*$, with the largest amplitude being $A^* = 3.2$. For the combined VIV and galloping, the vibration amplitude is marginal in the VIV branch while it significantly increases with $U^*$ in the galloping branch. In the transition from narrowed VIV to pure galloping, the vibration frequency shows a galloping-like feature, but the amplitude does not monotonically increase with increasing $U^*$. Moreover, a partition of the wake modes in the $U^*$–$\alpha$ parametric plane is presented, and the flow physics is elucidated through time variations of the displacement, drag and lift coefficients and vortex dynamics. The angle-of-attack range of galloping is largely predicted by performing a quasi-steady analysis of the galloping instability. Finally, the effects of $m^*$ and ${\textit {Re}}$, the roles of afterbody and the roles of separation point in determining vibration responses and vortex shedding frequency are further discussed.
Using detailed data on company visits by Chinese mutual funds, we provide direct evidence of mutual fund information acquisition activities and the consequent informational advantages mutual funds establish in local firms. Mutual funds are more likely to visit local and nearby firms both in and outside of their portfolios, but the ease of travel between fund and firm locations can substantially alleviate geographic distance constraints. Company visits by mutual funds are strongly associated with both fund trading activities and fund trading performance. Our results show that geographic constraints and costly information acquisition amplify information asymmetry in financial markets.
Brachiopods suffered high levels of extinction during the Permian–Triassic crisis, and their diversity failed to return to Permian levels. In the aftermath of the Permian-Triassic mass extinction, brachiopods were extremely rare worldwide, especially in the southern hemisphere. Here, we report a new Early Triassic brachiopod fauna from the Selong section in southern Tibet, China. A new genus and three new species have been identified: Selongthyris plana Wang and Chen n. gen. n. sp., Piarorhynchella selongensis Wang and Chen n. sp., and Schwagerispira cheni Wang and Chen n. sp., which are typical. The ontogenies and internal structures of these three new species are described in detail. This brachiopod fauna corresponds to the Neospathodus pakistanensis and Neospathodus waageni conodont biozones and Kashmirites and Anasibirites ammonoid biozones, indicating a late Dienerian to late Smithian age. The post-extinction recovery of brachiopods in the Himalayas may have begun by the early Smithian of the Early Triassic. In addition, these species did not persist into the Spathian substage, suggesting that the newly evolved brachiopods in the southern Tethys were severely affected by the late Smithian extinction event.
A short-term 2-week (2w) and long-term 8-week (8w) feeding trial was conducted to investigate the effects of low-starch (LS) and high-starch (HS) diets on the growth performance, metabolism and liver health of largemouth bass (Micropterus salmoides). Two isonitrogenous and isolipidic diets containing two levels of starch (LS, 9·06 %; HS, 13·56 %) were fed to largemouth bass. The results indicated that HS diet had no significant effects on specific growth rate during 2w, whereas significantly lowered specific growth rate at 8w. HS diet significantly increased hepatic glycolysis and gluconeogenesis at postprandial 24 h in 2w. The hepatosomatic index, plasma alkaline phosphatase, total bile acid (TBA) levels, and hepatic glycogen, TAG, total cholesterol, TBA, and NEFA contents were significantly increased in the HS group at 2w. Moreover, HS diet up-regulated fatty acid and TAG synthesis-related genes and down-regulated TAG hydrolysis and β-oxidation-related genes. Therefore, the glucolipid metabolism disorders resulted in metabolic liver disease induced by HS diet at 2w. However, the up-regulation of bile acid synthesis, inflammation and energy metabolism-related genes in 2w indicated that largemouth bass was still in a state of ‘self-repair’ response. Interestingly, all the metabolic parameters were returned to homoeostasis, with up-regulation of intestinal glucose uptake and transport-related genes, even hepatic histopathological analysis showed no obvious abnormality in the HS group in 8w. In conclusion, HS feed induced short-term acute metabolic disorder, but long-term metabolic adaptation to HS diet was related to repairing metabolism disorders via improving inflammatory responses, bile acid synthesis and energy metabolism. These results strongly indicated that the largemouth bass owned certain adaptability to HS diet.
The decompositions of the skin-friction and heat-transfer coefficients based on the twofold repeated integration in hypersonic transitional and turbulent boundary layers are analysed to give some major reasons of the overshoot phenomena of the wall skin friction and heat transfer. It is shown that the overshoot of the skin-friction coefficient is mainly caused by the drastic change of the mean velocity profiles, especially the strong negative streamwise gradient of the mean streamwise velocity far from the wall; and the overshoot of the heat-transfer coefficient is primarily due to the viscous dissipation, especially the strong positive vertical gradient of the mean streamwise velocity near the wall. These observations are different from the previous observations that the Reynolds shear stress and Reynolds heat flux are the reasons, respectively. Further investigations show that the above observations are independent of the set-up of the wall blowing and suction parameters, which indicates the universality of the major reasons of the overshoot phenomena in our numerical simulations. In the hypersonic turbulent boundary layers, it is observed that the strongly cooled wall temperature and the high Mach number can slightly enhance the contribution of the Reynolds shear stress, and weaken the contribution of the mean convection, mainly due to the strong compressibility effect. Moreover, the magnitudes of the relative contributions of the mean convection, pressure dilatation, viscous dissipation and the Reynolds heat flux increase as the wall temperature increases.
Energy homeostasis is essential for organisms to maintain fluctuation in energy accumulation, mobilization. Lipids as the main energy reserve in insects, their metabolism is under the control of many physiological program. This study aimed to determine whether the adipokinetic hormone receptor (AKHR) was involved in the lipid mobilization in the Spodoptera litura. A full-length cDNA encoding AKHR was isolated from S. litura. The SlAKHR protein has a conserved seven-transmembrane domain which is the character of a putative G protein receptor. Expression profile investigation revealed that SlAKHR mRNA was highly expressed in immatural stage and abundant in fat body in newly emerged female adults. Knockdown of SlAKHR expression was achieved through RNAi by injecting double-stranded RNA (dsRNA) into the 6th instar larvae. The content of triacylgycerol (TAG) in the fat body increased significantly after the SlAKHR gene was knockdown. And decrease of TAG releasing to hemolymph with increase of free fatty acid (FFA) in hemolymph were observed when the SlAKHR gene was knowned-down. In addition, lipid droplets increased in fat body was also found. These results suggested that SlAKHR is critical for insects to regulate lipids metabolism.
The binary scaling law is a classical similarity law used in analysing hypersonic flow fields. The objective of this study is to investigate the applicability of the binary scaling law in thermochemical non-equilibrium airflow. Dimensional analysis of vibrational and electron–electronic energy conservation equations was employed to explore the theoretical reasons for the failure of the binary scaling law. Numerical simulation based on a multi-temperature model (translational–rotational temperature T, electron–electronic excitation temperature ${T_e}$ and the vibrational temperatures of ${\textrm{O}_2}$ and ${\textrm{N}_2}$, $\; {T_{{v_{{\textrm{O}_2}}}}}$and ${T_{{v_{{\textrm{N}_2}}}}}$) with two chemical models (the Gupta model and the Park model) was adopted to study the accuracy of the binary scaling law for electron distribution at high altitude with extremely high Mach number. The results of theoretical analysis indicate that the three-body collision reactions and the translation–electron energy exchange from collisions between electrons and ions, ${Q_{t - e\_ions}}$, can cause the failure of the binary scaling law. The results of numerical simulation show that the electron-impact ionization reactions are the main reasons for the invalidation of the binary scaling law for electron distribution at high altitude with high Mach number. With an increase of free-stream Mach number, the negative effect on the binary scaling law caused by ${Q_{t - e\_ions}}$ cannot be ignored.
This study explores the impact of socially responsible human resource management (SR-HRM) on the turnover intention by exploring the effects of psychological contract violation (PCV) and moral identity. Using a sample of 284 employees in China, we found that PCV mediated the negative relationship between SR-HRM and turnover intention. Moral identity moderated the direct effect of PCV on turnover intention as well as the indirect effect of SR-HRM on turnover intention via PCV, such that both the direct and indirect effects were stronger for employees with a low level of moral identity compared to those with the high level of moral identity. Findings from this study provide a greater understanding of the internal mechanisms and boundary conditions of SR-HRM that affect turnover intentions. Study findings also provide guidance to organizations seeking to reduce employee turnover.
Athetis lepigone Möschler (Lepidoptera, Noctuidae) is a common maize pest in Europe and Asia. However, there is no long-term effective management strategy is available yet to suppress its population. Adults rely heavily on olfactory cues to locate their optimal host plants and oviposition sites. Pheromone-binding proteins (PBPs) are believed to be responsible for recognizing and transporting different odorant molecules to interact with receptor membrane proteins. In this study, the ligand-binding specificities of two AlepPBPs (AlepPBP2 and AlepPBP3) for sex pheromone components and host plant (maize) volatiles were measured by fluorescence ligand-binding assay. The results demonstrated that AlepPBP2 had a high affinity with two pheromones [(Z)-7-dodecenyl acetate, Ki = 1.11 ± 0.1 μM, (Z)-9-tetradecenyl acetate, Ki = 1.32 ± 0.15 μM] and ten plant volatiles, including (-)-limonene, α-pinene, myrcene, linalool, benzaldehyde, nonanal, 2-hexanone, 3-hexanone, 2-heptanone and 6-methyl-5-hepten-2-one. In contrast, we found that none of these chemicals could bind to AlepPBP3. Our results clearly show no significant differences in the functional characterization of the binding properties between AlepPBP2 and AlepPBP3 to sex pheromones and host plant volatiles. Furthermore, molecular docking was employed for further detail on some crucial amino acid residues involved in the ligand-binding of AlepPBP2. These findings will provide valuable information about the potential protein binding sites necessary for protein-ligand interactions which appear as attractive targets for the development of novel technologies and management strategies for insect pests.
The wheat aphid Sitobion miscanthi (CWA) is an important harmful pest in wheat fields. Insecticide application is the main method to effectively control wheat aphids. However, CWA has developed resistance to some insecticides due to its extensive application, and understanding resistance mechanisms is crucial for the management of CWA. In our study, a new P450 gene, CYP4CJ6, was identified from CWA and showed a positive response to imidacloprid and thiamethoxam. Transcription of CYP4CJ6 was significantly induced by both imidacloprid and thiamethoxam, and overexpression of CYP4CJ6 in the imidacloprid-resistant strain was also observed. The sensitivity of CWA to these two insecticides was increased after the knockdown of CYP4CJ6. These results indicated that CYP4CJ6 could be associated with CWA resistance to imidacloprid and thiamethoxam. Subsequently, the posttranscriptional regulatory mechanism was assessed, and miR-316 was confirmed to participate in the posttranscriptional regulation of CYP4CJ6. These results are crucial for clarifying the roles of P450 in the resistance of CWA to insecticides.
Prolonged parturition duration has been widely demonstrated to be a risk factor for incidence of stillbirth. This study evaluated the supply of dietary fibre on the parturition duration, gut microbiota and metabolome using sows as a model. A total of 40 Yorkshire sows were randomly given diet containing normal level of dietary fibre (NDF, 17·5 % dietary fibre) or high level of dietary fibre (HDF, 33·5 % dietary fibre). Faecal microbiota profiled with 16S rRNA amplicon sequencing, SCFA and metabolome in the faeces and plasma around parturition were compared between the dietary groups. Correlation analysis was conducted to further explore the potential associations between specific bacterial taxa and metabolites. Results showed that HDF diet significantly improved the parturition process as presented by the shorter parturition duration. HDF diet increased the abundance of the phyla Bacteroidetes and Synergistetes and multiple genera. Except for butyrate, SCFA levels in the faeces and plasma of sows at parturition were elevated in HDF group. The abundances of fifteen and twelve metabolites in the faeces and plasma, respectively, markedly differ between HDF and NDF sows. These metabolites are involved in energy metabolism and bacterial metabolism. Correlation analysis also showed associations between specific bacteria taxa and metabolites. Collectively, our study indicates that the improvement of parturition duration by high fibre intake in late gestation is associated with gut microbiota, production of SCFA and other metabolites, potentially serving for energy metabolism.
We present an experimental study of the large-scale vortex (or large-scale circulation, LSC) in turbulent Rayleigh–Bénard convection in a $\varGamma =\text {diameter}/\text {height}=2$ cylindrical cell. The working fluid is deionized water with Prandtl number ($Pr$) around 5.7, and the Rayleigh number ($Ra$) ranges from $7.64\times 10^7$ to $6.06\times 10^8$. We measured the velocity field in various vertical cross-sectional planes by using the planar particle image velocimetry technique. The velocity measurement in the LSC central plane shows that the flow is in the single-roll form, and the centre of the single-roll (vortex) does not always stay at the centre of the cell; instead, it orbits periodically in the direction opposite to the flow direction of the LSC, with its trajectory in the shape of an ellipse. The velocity measurements in the three vertical planes in parallel to the LSC central plane indicate that the flow is in the vortex tube form horizontally filling almost the whole cell, and the centre line of the vortex tube is consistent with the so-called ‘jump rope’ form proposed by a previous study that combined numerical simulation and local velocity measurements in the low $Pr$ case (Vogt et al., Proc. Natl Acad. Sci. USA, vol. 115, 2018, pp. 12674–12679). In addition, we found that the oscillation of the local velocity in $\varGamma =2$ cells originates from the periodical orbiting of the vortex centre. Our velocity measurements further indicate that the vortex centre orbiting is absent in $\varGamma =1$ cells, at least in the $Ra$ range of our experiments.