We consider the boundary Hardy–Hénon equation
\[ -\Delta u=(1-|x|)^{\alpha} u^{p},\ \ x\in B_1(0), \]
where $B_1(0)\subset \mathbb {R}^{N}$$(N\geq 3)$ is a ball of radial $1$ centred at $0$, $p>0$ and $\alpha \in \mathbb {R}$. We are concerned with the estimate, existence and nonexistence of positive solutions of the equation, in particular, the equation with Dirichlet boundary condition. For the case $0< p<({N+2})/({N-2})$, we establish the estimate of positive solutions. When $\alpha \leq -2$ and $p>1$, we give some conclusions with respect to nonexistence. When $\alpha >-2$ and $1< p<({N+2})/({N-2})$, we obtain the existence of positive solution for the corresponding Dirichlet problem. When $0< p\leq 1$ and $\alpha \leq -2$, we show the nonexistence of positive solutions. When $0< p<1$, $\alpha >-2$, we give some results with respect to existence and uniqueness of positive solutions.