We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Words’ morphemic structure and their orthographic representations vary across languages. How do bilingual experiences with structurally distinct languages influence children's morphological processes for word reading? Focusing on English literacy in monolinguals and bilinguals (N = 350, ages 5–9), we first revealed unique contributions of derivational (friend-li-est) and compound (girl-friend) morphology to early word reading. We then examined mechanisms of bilingual transfer in matched samples of Spanish–English and Chinese–English dual first language learners. Results revealed a principled cross-linguistic interaction between language group (Spanish vs. Chinese bilinguals) and type of morphological awareness. Specifically, bilinguals’ proficiency with the type of morphology that was less characteristic of their home language explained greater variance in their English literacy. These findings showcase the powerful effects of bilingualism on word reading processes in children who have similar reading proficiency but different language experiences, thereby advancing theoretical perspectives on literacy across diverse learners.
Depression is a debilitating mental disorder that often coexists with anxiety. The genetic mechanisms of depression and anxiety have considerable overlap, and studying depression in non-anxiety samples could help to discover novel gene. We assess the genetic variation of depression in non-anxiety samples, using genome-wide association studies (GWAS) and linkage disequilibrium score regression (LDSC).
Methods
The GWAS of depression score and self-reported depression were conducted using the UK Biobank samples, comprising 99,178 non-anxiety participants with anxiety score <5 and 86,503 non-anxiety participants without self-reported anxiety, respectively. Replication analysis was then performed using two large-scale GWAS summary data of depression from Psychiatric Genomics Consortium (PGC). LDSC was finally used to evaluate genetic correlations with 855 health-related traits based on the primary GWAS.
Results
Two genome-wide significant loci for non-anxiety depression were identified: rs139702470 (p = 1.54 × 10−8, OR = 0.29) locate in PIEZO2, and rs6046722 (p = 2.52 × 10−8, OR = 1.09) locate in CFAP61. These associated genes were replicated in two GWAS of depression from PGC, such as rs1040582 (preplication GWAS1 = 0.02, preplication GWAS2 = 2.71 × 10−3) in CFAP61, and rs11661122 (preplication GWAS1 = 8.16 × 10−3, preplication GWAS2 = 8.08 × 10−3) in PIEZO2. LDSC identified 19 traits genetically associated with non-anxiety depression (p < 0.001), such as marital separation/divorce (rg = 0.45, SE = 0.15).
Conclusions
Our findings provide novel clues for understanding of the complex genetic architecture of depression.
Neuromedin U (NMU) has a critical function on the regulation of food intake in mammals, while the information is little in teleost. To investigate the function of NMU on appetite regulation of Siberian sturgeon (Acipenser baerii), this study first cloned nmu cDNA sequence that encoded 154 amino acids including NMU-25 peptide. Besides, the results showed that nmu mRNA was widely distributed in various tissues especially in the hypothalamus and telencephalon. The results of nutritional status (pre-feeding and post-feeding, fasting and re-feeding) experiments showed that nmu mRNA expression was significantly decreased at 1 and 3 h after feeding in different brain regions. Similarly, after feeding, the expression of nmu significantly decreased in peripheral tissues. Moreover, nmu expression in the hypothalamus was significantly increased after fasting 1 d, but decreased after fasting 17 d, which was significantly reversed after re-feeding. However, other brain regions like telencephalon and peripheral tissues like oesophagus, intestinum valvula and liver have different change patterns. Further study showed that acute i.c.v. and i.p. injection of NMU and chronic i.p. injection of NMU significantly reduced the food intake in a dose-dependent mode. In addition, the expressions of several critical appetite factors (nmu, aplein, cart, cck, ghrelin, npy, nucb2, pyy and ucn3) were significantly affected by acute NMU-25 administration in the hypothalamus, intestinum valvula and liver. These results indicate that NMU-25 has the anorexigenic function on food intake by affecting different appetite factors in Siberian sturgeon, which provides a foundation for further exploring the appetite regulation networks in fish.
Due to the lack of research between the inner layers in the structure of colonic mucous and the metabolism of fatty acid in the constipation model, we aim to determine the changes in the mucous phenotype of the colonic glycocalyx and the microbial community structure following treatment with Rhubarb extract in our research. The constipation and treatment models are generated using adult male C57BL/6N mice. We perform light microscopy and transmission electron microscopy (TEM) to detect a Muc2-rich inner mucus layer attached to mice colon under different conditions. In addition, 16S rDNA sequencing is performed to examine the intestinal flora. According to TEM images, we demonstrate that Rhubarb can promote mucin secretion and find direct evidence of dendritic structure-linked mucus structures with its assembly into a lamellar network in a pore size distribution in the isolated colon section. Moreover, the diversity of intestinal flora has noticeable changes in constipated mice. The present study characterizes a dendritic structure and persistent cross-links have significant changes accompanied by the alteration of intestinal flora in feces in models of constipation and pretreatment with Rhubarb extract.
Violent respiratory events play critical roles in the transmission of respiratory diseases, such as coughing and sneezing, between infectious and susceptible individuals. In this work, large-scale multiphase flow large-eddy simulations have been performed to simulate the coughing jet from a human's mouth carrying pathogenic or virus-laden droplets by using a weakly compressible smoothed particle hydrodynamics method. We explicitly model the cough jet ejected from a human mouth in the form of a mixture of two-phase fluids based on the cough velocity profile of the exhalation flow obtained from experimental data and the statistics of the droplets’ sizes. The coupling and interaction between the two expiratory phases and ambient surrounding air are examined based on the interaction between the gas particles and droplet particles. First, the results reveal that the turbulence of the cough jet determines the dispersion of the virus-laden droplets, i.e. whether they fly up evolving into aerosols or fall down to the ground. Second, the droplet particles have significant effects on the evolution of the cough jet turbulence; for example, they increase the complexity and butterfly effect introduced by the turbulence disturbance. Our results show that the prediction of the spreading distance of droplet particles often goes beyond the social distancing rules recommended by the World Health Organization, which reminds us of the risks of exposure if we do not take any protecting protocol.
The epidemic of drug-resistant tuberculosis (DR-TB) has become a major concern in global TB control. This study aimed to investigate the patterns and trend of DR-TB epidemic between different time periods in Chongqing.
Methods:
A total of 985 and 835 culture positive TB patients with drug susceptibility testing (DST) results admitted to the hospital in 2016 and 2019, respectively, were included. Chi-square testing was used to compare the prevalence and trends of DR-TB in 2016 and 2019.
Results:
The proportion of previously treated TB cases with culture positivity was 45.7% in 2019, significantly higher than that in 2016 (39.1%, P = 0.004). The overall rate of drug resistance in 2019 was 43.1%, higher than that in 2016 (40.2%). The rates of multi-drug resistant TB (MDR-TB) and pre-extensively drug resistant TB (pre-XDR-TB) increased significantly from 2016 to 2019 among all TB cases (MDR: 25% vs 33.4%, P < 0.001 and pre-XDR: 7.1% vs 12.8%, P < 0.001, respectively) and previously treated TB cases (MDR: 46.5% vs 56%, P = 0.008 and pre-XDR: 13.2% vs 21.5%, P = 0.003, respectively).
Conclusions:
Our findings indicated that the prevalence of DR-TB remains high in Chongqing. The trend of resistance to anti-TB drugs beccame worse between 2016 and 2019. Moreover, acquired MDR may play a major role in MDR-TB epidemic in Chongqing. Therefore, rapid diagnosis and effective treatment of TB patients will be important to reduce the burden of DR-TB in Chongqing.
Lower-crust-derived adakitic rocks in the Gangdese belt provide important constraints on the timing of Tibetan crustal thickening and on the relative contributions of magmatic and tectonic processes. Here we present geochronological and geochemical data for the Wangdui porphyritic monzogranites in the western Gangdese belt. Zircon U–Pb dating yields emplacement ages of 46–44 Ma. All samples have high Sr (321–599 ppm), low Yb (0.76–1.33 ppm) and Y (10.6–18.3 ppm) contents, with high La/Yb (51.1–72.3) and Sr/Y (21.0–51.4) ratios, indicating adakitic affinities. The low MgO (0.97–1.76 wt %), Cr (7.49–53.6 ppm) and Ni (4.75–29.1 ppm) contents, as well as high 87Sr/86Sr(i) (0.7143–0.7145), low ϵNd(t) (−10.4 to −9.8) and zircon ϵHf(t) (−17.7 to 0.4) values, suggest that the Wangdui pluton most likely originated from partial melting of the thickened ancient lower crust. In combination with previously published data, despite the east–west-trending heterogeneity of crustal composition in the Gangdese belt, the La/Yb ratios of magmatic rocks reveal that both western and eastern segments experienced remarkable crustal thickening in the Eocene. However, in contrast to the thickened juvenile lower crust in the eastern segment formed by the underplating of mantle-derived magmas, tectonic shortening plays a more crucial role in thickening of the ancient basement in western Gangdese. In fact, such Eocene-thickened ancient lower-crust-derived adakitic rocks are widely distributed in the central Himalayan–Tibetan orogen. This, together with the extensive development of fold–thrust belts, suggests that tectonic shortening might be the main mechanism accounting for the crustal thickening associated with the India–Asia collision.
The fall armyworm (Spodoptera frugiperda), a destructive pest that originated in South and North America, spread to China in early 2019. Controlling this invasive pest requires an understanding of its population structure and migration patterns, yet the invasion genetics of Chinese S. frugiperda is not clear. Here, using the mitochondrial cytochrome oxidase subunit I (COI) gene, triose phosphate isomerase (Tpi) gene and eight microsatellite loci, we investigated genetic structure and genetic diversity of 16 S. frugiperda populations in China. The Tpi locus identified most S. frugiperda populations as the corn-strains, and a few were heterozygous strains. The microsatellite loci revealed that the genetic diversity of this pest in China was lower than that in South America. Furthermore, we found moderate differentiation among the populations, distinct genetic structures between adjacent populations and abundant genetic resources in the S. frugiperda populations from China sampled across 2 years. The survival rate of S. frugiperda was significantly higher when it was fed on corn leaves than on rice leaves, and the larval stage mortality rate was the highest under both treatments. Our results showed that S. frugiperda probably invaded China via multiple independent introductions and careful pesticide control, continuous monitoring and further studies will be needed to minimize its potential future outbreak.
A waveguide power divider based on ridge waveguide to microstrip line transition is presented in this paper. To improve the isolation performance, a probe insulator is inserted into the contact face from the center of the waveguide side wall, also two chip resistors are mounted on a planar substrate and connected with the probe to absorb the coupled energy. The impedance transformation is accomplished by ridge waveguide to microstrip line transition, which is hidden in the waveguide. This proposed power divider shows merits of waveguide power dividers and substrate-integrated waveguide power dividers simultaneously, i.e. planar output ports, compact size, and high isolation. For verification, a power divider operating at the Ka-band is simulated, fabricated, and measured. The obtained results show the return loss and isolation are better than 10 and 20 dB, respectively. The measured insertion loss is <1.5 dB, including the insertion loss of waveguide to microstrip line transitions at the output port in the range of 34.6–39 GHz.
Interactions between the boundary layer and two successive incident shock waves (ISWs) often occur in the supersonic mixed-compression inlets. However, the flow mechanism involved in such interactions has been studied rarely. In this study, we investigate experimentally and analytically the turbulent boundary layer separation flow induced by the single ISW and dual ISWs at the identical total deflection angles in a Mach 2.73 flow. Schlieren photography, wall pressure measurement and surface oil-flow visualisation are employed to diagnose the flow field. Experiments with the impingement points of the two ISWs intersecting on the bottom wall exhibit a separated flow with a triangle-like separation bubble, namely the first kind of dual-ISW/turbulent boundary layer interaction (ISWTBLI). Comparative studies show that various flow features of this kind of dual-ISWTBLI, including the extent of the separation region, pressure distribution and surface-flow topological structures, are nearly identical to those of the single-ISWTBLI with an identical total deflection angle. As the distance between the two ISWs increases, the shape of the separation region in the dual-ISWTBLI changes from triangle-like to quadrilateral-like, and the height of the separation region decreases accordingly, forming the second kind of dual-ISWTBLI. Furthermore, an inviscid model is developed for the dual-ISWTBLI to describe the complex shock wave system and elucidate the cause of a quadrilateral-like separation bubble in the second kind of dual-ISWTBLI. Moreover, based on a previous work by Souverein et al. (J. Fluid Mech., vol. 714, 2013, pp. 505–535) on the single-ISWTBLI, a modified scaling method is established for the first kind of dual-ISWTBLI.
This study investigates the dynamics of low-viscosity nanodroplets impacting surfaces with static contact angles from θ = 73° to 180° via molecular dynamics (MD) simulations. Two typical morphologies of impacting nanodroplets are observed at the maximum spreading state, a Hertz-ball-like in a low-Weber-number range and a thin-film-like in a high-Weber-number range. Only inertial and capillary forces dominate the impact for the former, whereas viscous force also becomes dominant for the latter. Regardless of morphologies at the maximum spreading state, the ratio of spreading time to contact time always remains constant on an ideal superhydrophobic surface with θ = 180°. With the help of different kinematic approximations of the spreading time and scaling laws of the contact time, scaling laws of the maximum spreading factor ${\beta _{max}}\sim W{e^{1/5}}$ in the low-Weber-number range (capillary regime) and ${\beta _{max}}\sim W{e^{2/3}}R{e^{ - 1/3}}$ (or ${\beta _{max}}\sim W{e^{1/2}}O{h^{1/3}}$) in the high-Weber-number range (cross-over regime) are obtained. Here, We, Re, and Oh are the Weber number, Reynolds number, and Ohnesorge number, respectively. Although the scaling laws are proposed only for the ideal superhydrophobic surface, they are tested valid for θ over 73° owing to the ignorable zero-velocity spreading effect. Furthermore, combining the two scaling laws leads to an impact number, $W{e^{3/10}}O{h^{1/3}} = 2.1$. This impact number can be used to determine whether viscous force is ignorable for impacting nanodroplets, thereby distinguishing the capillary regime from the cross-over regime.
This study presents a novel context awareness multihuman–robot interaction (MHRI) system that allows multiple operators to interact with a robot. In the system, a monocular multihuman 3D pose estimator is first developed with the convolutional neural network. The estimator first regresses a set of 2D joints representations of body parts and then restores the 3D joints positions based on these 2D representations. Further, the 3D joints are assigned to the corresponding individual with a priority–redundancy association algorithm. The whole 3D pose of each person is reconstructed in real time, even in crowded scenes containing both self-occlusion of the body and inter-person occlusion. Then, the identities of multiple persons are recognized with action context and 3D skeleton tracking to improve interactive efficiency. For context-awareness multitask interaction, the robot control strategy is designed based on target goal generation and correction. The generated goal is taken as a reference to the model predictive controller (MPC) to generate motion trajectory. Different interactive requirements are adapted by adjusting the weight parameters of the energy function of the MPC controller. Multihuman–robot interactive experiments, including dynamic obstacle avoidance (human–robot safety) and cooperative handling, demonstrate the feasibility and effectiveness of the MHRI, and the safety and collaborative efficiency of the system are evaluated with HRI metrics.
Although multiple global navigation satellite systems (multi-GNSS) with more visible satellites have a high success rate, they make positioning time-consuming. Partial ambiguity resolution (PAR) can improve the efficiency of multi-GNSS; however, at present PAR cannot simultaneously achieve fast and high-precision positioning with a high success rate. Therefore, PAR based on ambiguity dilution of precision- and convex-hull-based satellite selection is proposed. The experimental results of the proposed PAR, its corresponding satellite selection algorithm, the classical PAR, and the low-cutoff-elevation-angle-based multi-GNSS show that the proposed PAR outperforms the classical PAR, i.e., it achieves fast and high-precision positioning with a success rate of 100⋅0%. Furthermore, in terms of R-ratio-test-based ambiguity validation, it improves the reliability of carrier-phase-based integrity monitoring of multi-GNSS and the corresponding satellite selection algorithms. In addition, its positioning accuracy is close to that of multi-GNSS and higher than that of the classical PAR, with maximum differences of 0⋅3 and 2⋅4 cm, respectively. The proposed single (dual) frequency-based PAR improves single/dual-frequency multi-GNSS efficiency by more than 54⋅9%/80⋅4% (42⋅0%/75⋅8%) when 14⋅4 (13⋅2) out of 24⋅4 satellites are selected.
Gut microbiome and dietary patterns have been suggested to be associated with depression/anxiety. However, limited effort has been made to explore the effects of possible interactions between diet and microbiome on the risks of depression and anxiety.
Methods
Using the latest genome-wide association studies findings in gut microbiome and dietary habits, polygenic risk scores (PRSs) analysis of gut microbiome and dietary habits was conducted in the UK Biobank cohort. Logistic/linear regression models were applied for evaluating the associations for gut microbiome-PRS, dietary habits-PRS, and their interactions with depression/anxiety status and Patient Health Questionnaire (PHQ-9)/Generalized Anxiety Disorder-7 (GAD-7) score by R software.
Results
We observed 51 common diet–gut microbiome interactions shared by both PHQ score and depression status, such as overall beef intake × genus Sporobacter [hurdle binary (HB)] (PPHQ = 7.88 × 10−4, Pdepression status = 5.86 × 10−4); carbohydrate × genus Lactococcus (HB) (PPHQ = 0.0295, Pdepression status = 0.0150). We detected 41 common diet–gut microbiome interactions shared by GAD score and anxiety status, such as sugar × genus Parasutterella (rank normal transformed) (PGAD = 5.15 × 10−3, Panxiety status = 0.0347); tablespoons of raw vegetables per day × family Coriobacteriaceae (HB) (PGAD = 6.02 × 10−4, Panxiety status = 0.0345). Some common significant interactions shared by depression and anxiety were identified, such as overall beef intake × genus Sporobacter (HB).
Conclusions
Our study results expanded our understanding of how to comprehensively consider the relationships for dietary habits–gut microbiome interactions with depression and anxiety.
This retrospective study investigated the predictive value of the Controlling Nutritional Status (CONUT) score in patients with intermediate-stage hepatocellular carcinoma (HCC) who received transarterial chemoembolization (TACE). Nomograms were developed to predict progression-free and overall survival (PFS, OS). The medical data of 228 patients with HCC and treated with TACE were collected. The patients were apportioned to 2 groups according to CONUT score: low or high (<4, ≥4). Univariate and multivariate analyses were performed using Cox regression for OS and PFS. OS and PFS were estimated by the Kaplan-Meier curve and compared with the log-rank test. Nomograms were constructed to predict patient OS and PFS. The nomograms were evaluated for accuracy, discrimination, and efficiency. The cut-off value of CONUT score was 4. The higher the CONUT score, the worse the survival; Kaplan-Meier curves showed significant differences in OS and PFS between the low and high CONUT score groups (P = 0·033, 0·047). The nomograms including CONUT, based on the prognostic factors determined by the univariate and multivariate analyses, to predict survival in HCC after TACE were generated. The CONUT score is an important prognostic factor for both OS and PFS for patients with intermediate HCC who underwent TACE. The cut-off value of the CONUT score was 4. A high CONUT score suggests poor survival outcomes. Nomograms generated based on the CONUT score were good models to predict patient OS and PFS.
Celestial navigation is an important means of maritime navigation; it can automatically achieve inertially referenced positioning and orientation after a long period of development. However, the impact of different accuracy of observations and the influence of nonstationary states, such as ship speed change and steering, are not taken into account in existing algorithms. To solve this problem, this paper proposes an adaptively robust maritime celestial navigation algorithm, in which each observation value is given an equivalent weight according to the robust estimation theory, and the dynamic balance between astronomical observation and prediction values of vessel motion is adjusted by applying the adaptive factor. With this system, compared with the frequently used least square method and extended Kalman filter algorithm, not only are the real-time and high-precision navigation parameters, such as position, course, and speed for the vessel, calculated simultaneously, but also the influence of abnormal observation and vessel motion status change could be well suppressed.
We assessed the association between the dietary inflammatory index (DII) and the development of metabolic syndrome in the elderly over 55 years in Northern China. The data of 1936 Chinese adults aged 55 years and over from a community-based neurological disease cohort study from 2018 to 2019 were analysed. Multiple logistic regression and restricted cubic splines regression were used for analysis, and social demographics, lifestyle and health-related factors were adjusted. In the fully adjusted model, the risk of metabolic syndrome increased by 1·28-fold in people with a pro-inflammatory diet. When we divide the metabolic syndrome by its components, high pro-inflammatory diet and hyperglycaemia, TAG, hypertension and abdominal obesity, we failed to observe a significant association between a high pro-inflammatory diet and HDL-cholesterol. However, these associations are moving in the expected direction. At the same time, the results of BMI subgroup analysis showed that with the increase of DII, obese people are at increased risk of metabolic syndrome, hyperglycaemia, high TAG, hypertension and abdominal obesity. Also in overweight people, the increase in DII is accompanied by an increased risk of hyperglycaemia and abdominal obesity. Higher inflammatory diet is related to metabolic syndrome, hypertension, hyperglycaemia, abdominal obesity and hypertriglyceridaemia. Further research is needed to confirm the role of inflammation and diet in the development of metabolic syndrome; however, it is desirable to reduce the dietary components associated with inflammation.
Patients with geriatric depression exhibit a spectrum of symptoms ranging from mild to severe cognitive impairment which could potentially lead to the development of Alzheimer’s disease (AD). The aim of the study is to assess the alterations of the default mode network (DMN) in remitted geriatric depression (RGD) patients and whether it could serve as an underlying neuropathological mechanism associated with the risk of progression of AD.
Design:
Cross-sectional study.
Participants:
A total of 154 participants, comprising 66 RGD subjects (which included 27 patients with comorbid amnestic mild cognitive impairment [aMCI] and 39 without aMCI [RGD]), 45 aMCI subjects without a history of depression (aMCI), and 43 matched healthy comparisons (HC), were recruited.
Measurements:
All participants completed neuropsychological tests and underwent resting-state functional magnetic resonance imaging (fMRI). Posterior cingulate cortex (PCC)-seeded DMN functional connectivity (FC) along with cognitive function were compared among the four groups, and correlation analyses were conducted.
Results:
In contrast to HC, RGD, aMCI, and RGD-aMCI subjects showed significant impairment across all domains of cognitive functions except for attention. Furthermore, compared with HC, there was a similar and significant decrease in PCC-seed FC in the bilateral medial superior frontal gyrus (M-SFG) in the RGD, aMCI, and RGD-aMCI groups.
Conclusions:
The aberrations in rsFC of the DMN were associated with cognitive deficits in RGD patients and might potentially reflect an underlying neuropathological mechanism for the increased risk of developing AD. Therefore, altered connectivity in the DMN could serve as a potential neural marker for the conversion of geriatric depression to AD.