We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In vivo transparent vessel segmentation is important to life science research. However, this task remains very challenging because of the fuzzy edges and the barely noticeable tubular characteristics of vessels under a light microscope. In this paper, we present a new machine learning method based on blood flow characteristics to segment the global vascular structure in vivo. Specifically, the videos of blood flow in transparent vessels are used as input. We use the machine learning classifier to classify the vessel pixels through the motion features extracted from moving red blood cells and achieve vessel segmentation based on a region-growing algorithm. Moreover, we utilize the moving characteristics of blood flow to distinguish between the types of vessels, including arteries, veins, and capillaries. In the experiments, we evaluate the performance of our method on videos of zebrafish embryos. The experimental results indicate the high accuracy of vessel segmentation, with an average accuracy of 97.98%, which is much more superior than other segmentation or motion-detection algorithms. Our method has good robustness when applied to input videos with various time resolutions, with a minimum of 3.125 fps.
In this paper, we show that each element in the convex hull of the rotation set of a compact invariant chain transitive set is realized by a Birkhoff solution, which is an improvement of the fundamental lemma of T. Zhou and W.-X. Qin [Pseudo solutions, rotation sets, and shadowing rotations for monotone recurrence relations. Math. Z.297 (2021), 1673–1692] in the study of rotation sets for monotone recurrence relations. We then investigate the properties of rotation sets assuming the system has zero topological entropy. The rotation set for a Birkhoff recurrence class is a singleton and the forward and backward rotation numbers are identical for each solution in the same Birkhoff recurrence class. We also show the continuity of rotation numbers on the set of non-wandering points. If the rotation set is upper-stable, then we show that each boundary point is a rational number, and we also obtain a result of bounded deviation.
Determination of calibration parameters is essential for the fusion performance of an inertial measurement unit (IMU) and odometer integrated navigation system. Traditional calibration methods are commonly based on the filter frame, which limits the improvement of the calibration accuracy. This paper proposes a graph-optimisation-based self-calibration method for the IMU/odometer using preintegration theory. Different from existing preintegrations, the complete IMU/odometer preintegration model is derived, which takes into consideration the effects of the scale factor of the odometer, and misalignments in the attitude and position between the IMU and odometer. Then the calibration is implemented by the graph-optimisation method. The KITTI dataset and field experimental tests are carried out to evaluate the effectiveness of the proposed method. The results illustrate that the proposed method outperforms the filter-based calibration method. Meanwhile, the performance of the proposed IMU/odometer preintegration model is optimal compared with the traditional preintegration models.
Surfactant and polymer flooding, alone or in combination, are common and effective chemical EOR methods. This chapter reviews the main physical mechanisms and presents how the corresponding mathematical flow models are implemented as an add-on module to MRST to provide a powerful and flexible tool for investigating flooding processes in realistic reservoir scenarios. Using a so-called limited-compositional models, surfactant and polymer are both assumed to be transported in the water phase only, but also adsorbed within the rock. The hydrocarbon phases are described with the standard three-phase black-oil equations. The resulting flow models also take several physical effects into account, such as chemical adsorption, inaccessible pore space, permeability reduction, effective solution viscosities, capillary pressure alteration, relative permeability alteration, and so on. The new simulator is implemented using the object-oriented, automatic differentiation (AD-OO) framework from MRST, and can readily utilize features such as efficient iterative linear solvers with constrained pressure residual (CPR) preconditioners, efficient implicit and sequential solution strategies, advanced time-step controls, improved spatial discretizations, etc. We describe how the computation of fluid properties can be decomposed into state functions for better granularity and present several numerical examples that demonstrate the software and illustrate different physical effects. We also discuss the resolution of trailing chemical waves and validate our implementation against a commercial simulator.
To explore the accuracy of estimated 24-h urinary iodine excretion (24-h UIEest) in assessing iodine nutritional status.
Design:
Fasting venous blood, 24-h and spot urine samples were collected during the day. The urinary iodine concentration (UIC) and urinary creatinine concentration (UCrC) were measured, and the urinary iodine-to-creatinine ratio (UI/Cr), 24-h UIEest, and 24-h urinary iodine excretion (24-h UIE) were calculated. At the population level, correlation and consistency between UIC, UI/Cr, 24-h UIEest and 24-h UIE were assessed using correlation analysis and Bland–Altman plots. At the individual level, receiver operating characteristic (ROC) curves were used to analyse the accuracy of the above indicators for evaluating insufficient and excessive iodine intake. The reference interval of 24-h UIEest was established based on percentile values.
Setting:
Indicator can accurately evaluate individual iodine nutrition during pregnancy remains controversial.
Participants:
Pregnant women (n 788).
Results:
Using 24-h UIE as standard, the correlation coefficients of 24-h UIEest from different periods of the day ranged from 0·409 to 0·531, and the relative average differences ranged from 4·4 % to 10·9 %. For diagnosis of insufficient iodine intake, the area under the ROC curve of 24-h UIEest was 0·754, sensitivity and specificity were 79·6 % and 65·4 %, respectively. For diagnosis of excessive iodine intake, the area of 24-h UIEest was 0·771, sensitivity and specificity were 66·7 % and 82·0 %, respectively. The reference interval of 24-h UIEest was 58·43–597·65 μg.
Conclusions:
Twenty-four-hour UIEest can better indicate iodine nutritional status at a relatively large sample size in a given population of pregnant women. It can be used for early screening at the individual level to obtain more lead time for pregnant women.
We assessed longitudinal association between calcium intake during adolescence and hypertension in adulthood. Longitudinal study data of 1611 participants from the China Health and Nutrition Survey during 1991–2011 were used. On average they were followed for 11·4 years. Dietary calcium intake during adolescence was assessed based on three 24-hour dietary recalls collected in each visit/survey between 1991 and 2009 (seven waves). The intake was recoded into quartiles. Cumulative mean±SD calcium intake was 199·9±144·8 mg/1000 kcal/day during adolescence. In total 102 participants had hypertension in adulthood (97 men and 5 women). There was a clear U-shaped association between adolescence calcium intake quartiles and adulthood hypertension: across the quartiles, hypertension prevalence was 6·7%, 4·0%, 5·2% and 9·5%, respectively. After adjustment for potential confounders including weight status and dietary pattern, odds ratios (OR, 95% CI) for hypertension were 2·32 (95% CI 1·07–5·00) for lowest quartile, 1·00 (reference), 1·34 (95% CI 0·61–2·97), and 3·10 (95% CI 1·49–6·46) across the quartiles. Lower or higher calcium intake during adolescence was associated with hypertension in adulthood independent of weight status and dietary pattern.
Iodine is an important element in thyroid hormone biosynthesis. Thyroid function is regulated by the hypothalamic–pituitary–thyroid axis. Excessive iodine leads to elevated thyroid-stimulating hormone (TSH) levels, but the mechanism is not yet clear. Type 2 deiodinase (Dio2) is a Se-containing protease that plays a vital role in thyroid function. The purpose of this study was to explore the role of hypothalamus Dio2 in regulating TSH increase caused by excessive iodine and to determine the effects of iodine excess on thyrotropin-releasing hormone (TRH) levels. Male Wistar rats were randomised into five groups and administered different iodine dosages (folds of physiological dose): normal iodine, 3-fold iodine, 6-fold iodine, 10-fold iodine and 50-fold iodine. Rats were euthanised at 4, 8, 12 or 24 weeks after iodine administration. Serum TRH, TSH, total thyroxine (TT4) and total triiodothyronine (TT3) were determined. Hypothalamus tissues were frozen and sectioned to evaluate the expression of Dio2, Dio2 activity and monocarboxylate transporter 8 (MCT8). Prolonged high iodine intake significantly increased TSH expression (P < 0·05) but did not affect TT3 and TT4 levels. Prolonged high iodine intake decreased serum TRH levels in the hypothalamus (P < 0·05). Dio2 expression and activity in the hypothalamus exhibited an increasing trend compared at each time point with increasing iodine intake (P < 0·05). Hypothalamic MCT8 expression was increased in rats with prolonged high iodine intake (P < 0·05). These results indicate that iodine excess affects the levels of Dio2, TRH and MCT8 in the hypothalamus.
The association between blood transfusion and ventilator-associated events (VAEs) has not been fully understood. We sought to determine whether blood transfusion increases the risk of a VAE.
Design:
Nested case-control study.
Setting:
This study was based on a registry of healthcare-associated infections in intensive care units at West China Hospital system.
Patients:
1,657 VAE cases and 3,293 matched controls were identified.
Methods:
For each case, 2 controls were randomly selected using incidence density sampling. We defined blood transfusion as a time-dependent variable, and we used weighted Cox models to calculate hazard ratios (HRs) for all 3 tiers of VAEs.
Results:
Blood transfusion was associated with increased risk of ventilator-associated complication-plus (VAC-plus; HR, 1.47; 95% CI, 1.22–1.77; P <.001), VAC-only (HR, 1.29; 95% CI, 1.01–1.65; P = .038), infection-related VAC-plus (IVAC-plus; HR, 1.78; 95% CI, 1.33–2.39; P < .001), and possible ventilator-associated pneumonia (PVAP; HR, 2.10; 95% CI, 1.10–3.99; P = .024). Red blood cell (RBC) transfusion was also associated with increased risk of VAC-plus (HR, 1.34; 95% CI, 1.08–1.65; P = .007), IVAC-plus (HR, 1.70; 95% CI, 1.22–2.36; P = .002), and PVAP (HR, 2.49; 95% CI, 1.17–5.28; P = .018). Compared to patients without transfusion, the risk of VAE was significantly higher in patients with RBC transfusions of >3 units (HR, 1.73; 95% CI, 1.25–2.40; P = .001) but not in those with RBC transfusions of 0–3 units.
Conclusion:
Blood transfusions were associated with increased risk of all tiers of VAE. The risk was significantly higher among patients who were transfused with >3 units of RBCs.
To investigate the clinical impact of ventilator-associated events (VAEs) on adverse prognoses and risk factors for mortality among intensive care unit (ICU) patients receiving invasive mechanical ventilation (IMV) based on an ICU healthcare-associated infection (ICU-HAI) registry.
Design:
A cohort study was conducted based on an ICU-HAI registry including 30,830 patients between 2015 and 2018.
Setting:
The study was conducted using data from 5 adult ICUs of a referral hospital.
Patients:
Adult patients in the ICU-HAI registry who received ≥4 consecutive IMV days.
Methods:
Clinical outcomes and mortality risk factors for VAEs were analyzed using propensity score matching (PSM), multivariate regression models, and sensitivity analyses.
Results:
Of 6,426 included patients, 1,803 developed 1,899 VAEs. After PSM, patients with VAEs did have prolonged length of stay in the ICU and in the hospital, increased hospitalization costs, longer days on mechanical ventilation, higher proportion of ≥9 days on mechanical ventilation, higher rate of failure in extubating mechanical ventilation, and excess all-cause mortality in the ICU. Older age (adjusted OR [aOR], 1.02), higher APACHE II score on ICU admission (aOR, 1.06), pneumonia (aOR, 1.49), blood transfusion (aOR 1.43), immunosuppressive drugs (aOR, 1.69), central-line catheter (aOR, 2.06), and ≥2 VAEs in the ICU (aOR, 1.99) were associated with higher risks for all-cause mortality in an ICU.
Conclusions:
Patients with VAEs indeed had poorer clinical outcomes. Older age, higher APACHE II score on ICU admission, pneumonia, blood transfusion, immunosuppressive drugs, central-line catheter, and ≥2 VAEs in the ICU were risk factors for all-cause mortality of VAE patients in the ICU.
Fossil charcoals from archaeological sites provide direct evidence for the relationship between environmental change and ancient peoples’ livelihoods in the past. Our identification of 5811 fossil charcoal fragments from 84 samples suggested temperate deciduous and mixed conifer-broadleaved forests as the dominant vegetation at the Erdaojingzi site in northeastern China ca. 3500 cal yr BP; the major representative taxa were Quercus, Pinus, and Ulmus. Four woody plants probably supplied humans with food resources at the Erdaojingzi site, including Quercus, Ulmus, Amygdalus/Armeniaca, and Ziziphus. The nuts of Quercus were utilized as staple foods because of their rich starch content. The leaves of Ulmus may have been used by humans because of their massive dietary fibre. Amygdalus/Armeniaca and Ziziphus probably provided fruits for humans. Based on the coexistence approach (CA) used on the fossil charcoals, we found that the MAT anomaly was 7.9 ± 5.9°C at ca. 3500 cal yr BP, which is almost the same as the modern one (7.8°C), while the MAP was halved from 772 ± 301 mm at ca. 3500 cal yr BP to 370 mm currently. The wet climate might have facilitated significant development of rain-fed agriculture, promoted the emergence of large settlements, and eventually facilitated the birth of civilization.
A study was conducted to identify whether composted manure and straw amendments (replacement of a portion of chemical fertilizer [50% of the total nitrogen application] with composted pig manure, and straw return [all straw from the previous rice crop] combined with chemical fertilizer) compared with no fertilization and chemical fertilizer only would change the dominant species of wheat-associated weeds as well as influence their growth and seed yield in a rice (Oryza sativa L.)–wheat (Triticum aestivum L.) rotation system. The study was initiated in 2010, and the treatment effects on the species, density, plant height, shoot biomass, seed yield of dominant weeds, and wheat yields were assessed in 2017 and 2018. Fertilization significantly increased the height, density, and yield of wheat, as well as the shoot biomass of wheat-associated weeds, but decreased the weed species number. A total of 17 and 14 weed species were recorded in the experimental wheat fields in 2017 and 2018, respectively. The most dominant weed species were American sloughgrass [Beckmannia syzigachne (Steud.) Fernald] and catchweed bedstraw (Galium aparine L.), which made up more than 64% of the weed community in all treatments. When the chemical fertilizer application was amended with pig manure compost and straw return, the relative abundance of B. syzigachne significantly decreased, while the relative abundance of G. aparine significantly increased. The application of the chemical fertilizer-only treatment resulted in increases in the density, shoot biomass, and seed yield of B. syzigachne, while the composted manure and straw amendments applied together with chemical fertilizer led to significant increases in the density, shoot biomass, and seed yield of G. aparine. Consequently, further research on ways to promote greater cropping system diversity will be needed to prevent the selection of weed species that are adapted to a limited suite of crop management practices.
In this study, the quasi-static and dynamic mechanical behaviors and the energy absorption capacity of closed-cell aluminum foams with uniform and graded densities were experimentally studied. The effects of density, strain rate, and graded density on the mechanical performances of aluminum foams were quantitatively evaluated. It was shown that the density had a significant effect on the quasi-static and dynamic compressive stress of aluminum foams. Moreover, impact compression experiment results revealed that aluminum foam was sensitive to the strain rate. As the strain rate increased, the plateau stress and energy absorption capacity increased distinctly and the rate of deformation increased correspondingly. Finally, the investigation of aluminum foams with uniform and graded densities to study their deformation and failure mechanisms, mechanical characteristics, and energy absorption capacities showed that the GD 0.48-IV specimen exhibited superior impact resistance. The present work can provide a valuable reference for the optimum design of aluminum foam against impact loading.
The purpose of this study was to construct a glycyrrhetinic acid (GA)-mediated, breakable, intracellular, nanoscale drug-delivery carrier via amide and esterification reactions. The structures were identified by Fourier-transformed infrared (FTIR) and 1H-nuclear magnetic resonance (1H-NMR) spectrophotometry. The compatibility and safety of the carrier were evaluated using hemolysis and cytotoxicity tests. The GA-copolymer micelle was prepared using the solvent evaporation method. FTIR and 1H-NMR detection demonstrated the successful construction of the polymer. No hemolysis occurred in any concentration of polymer within 3 h, and the hemolysis rate was less than 5%. 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) experimental results showed that the novel polymer reduced the cell survival rate and had significant cytotoxic effects. The blank nanoparticles were liquid with light blue opalescence. Transmission electron microscopy revealed that the empty micelles were uniform spheres, with an average size of 62 nm and a zeta potential of −13 mV. The novel GA-mediated polymeric carrier material developed here has the potential to effectively kill human SMMC-7721 cancer cells within 3 days when the dose is above 500 ug/mL.
In this research paper we filter and verify miRNAs which may target silent information regulator homolog 2 (SIRT2) gene and then describe the mechanism whereby miRNA-212 might regulate lipogenic genes in mammary epithelial cell lines via targeting SIRT2. Bioinformatics analysis revealed that the bovine SIRT2 gene is regulated by three miRNAs: miR-212, miR-375 and miR-655. The three miRNAs were verified and screened by qRT-PCR, western blot, and luciferase multiplex verification techniques and only miR-212 was shown to have a targeting relationship with SIRT2. The results of co-transfecting miR-212 and silencing RNA (siRNA) showed that by targeting SIRT2, miR-212 can regulate the expression of fatty acid synthetase (FASN) and sterol regulatory element binding factor 1 (SREBP1) but not peroxisome proliferator-activated receptor gamma (PPARγ). Measurement of triglyceride (TAG) content showed that miR-212 increased the fat content of mammary epithelial cell lines. The study indicates that miR-212 could target and inhibit the expression of the SIRT2 gene to promote lipogenesis in mammary epithelial cell lines.
Politically motivated interference by politicians, or “politicised enforcement”, is a common cause of enforcement failure in many countries. Existing research on politicised enforcement has focused largely on incentives driven by electoral competition, while fewer studies analysed its mechanisms in an authoritarian context. Drawing on the case of China, this article develops the argument that politicised enforcement can be a consequence of the strategies adopted by authoritarian ruling elites to maintain political survival. Using a panel data set on the enforcement of land laws and regulations, the empirical analysis suggests that the intensity of enforcement correlates with economic performance and patron–client ties between central leaders and local officials, suggesting that political imperatives faced by ruling elites to promote economic growth and carry out clientelistic exchanges affect government decisions on enforcement. Moreover, these correlations remain robust after the implementation of reforms that promoted administrative centralisation within the enforcement agency, suggesting that politicised enforcement reflects the strategic behaviour of the ruling elites of the Party. These findings contribute to the literature on enforcement in authoritarian regimes broadly and in China specifically.
The aim of the present study was to explore the influence of tea consumption on diabetes mellitus in the Chinese population. This multi-centre, cross-sectional study was conducted in eight sites from south, east, north, west and middle regions in China by enrolling 12 017 subjects aged 20–70 years. Socio-demographic and general information was collected by a standardised questionnaire. A standard procedure was used to measure anthropometric characteristics and to obtain blood samples. The diagnosis of diabetes was determined using a standard 75-g oral glucose tolerance test. In the final analysis, 10 825 participants were included and multiple logistic models and interaction effect analysis were applied for assessing the association between tea drinking with diabetes. Compared with non-tea drinkers, the multivariable-adjusted OR for newly diagnosed diabetes were 0·80 (95 % CI 0·67, 0·97), 0·88 (95 % CI 0·71, 1·09) and 0·86 (95 % CI 0·67, 1·11) for daily tea drinkers, occasional tea drinkers and seldom tea drinkers, respectively. Furthermore, drinking tea daily was related to decreased risk of diabetes in females by 32 %, elderly (>45 years) by 24 % and obese (BMI > 30 kg/m2) by 34 %. Moreover, drinking dark tea was associated with reduced risk of diabetes by 45 % (OR 0·55; 95 % CI 0·42, 0·72; P < 0·01). The results imply that drinking tea daily was negatively related to risk of diabetes in female, elderly and obese people. In addition, drinking dark tea was associated with decreased risk of type 2 diabetes mellitus.
Episodic memory starts to decline very early in the development of Alzheimer’s disease (AD). Subtle impairments in memory binding may be detected in mild cognitive impairment (MCI). This study aims to examine the psychometric properties of the Chinese version of the memory binding test (MBT).
Methods:
One hundred and sixty-four subjects (26 individuals with AD, 67 individuals with amnestic MCI (aMCI), 30 individuals with subjective cognitive impairment (SCI), and 41 cognitively normal elderly individuals (NC)) participated in the study. Twenty-two subjects repeated the assessment of the MBT within 6 weeks (± 2 weeks). Pearson correlation was used to calculate the convergent validity. The test––retest reliability was determined by the calculation of the intraclass correlation coefficient (ICC). Discriminative validity was calculated to evaluate the receiver–operating characteristic curves. The optimal index was chosen by comparing the area under the curve for specificity and sensitivity ≥ 0.80. The optimal cutoff score of the index was chosen to maximize the sum of sensitivity and specificity.
Results:
The absolute value of the convergent validity of the direct indexes of MBT ranged from 0.443 to 0.684. The ICC for each of direct indexes was 0.887–0.958. Total delayed paired recall (TDPR) was the optimal index for discriminating aMCI from NC. The cutoff score for TDPR was ≤25 to distinguish aMCI from NC (sensitivity = 0.896, specificity = 0.707).
Conclusion:
The Chinese version of MBT is a valid and reliable instrument to detect MCI.
A magnetic dipole quasi-Yagi antenna based on a dielectric resonator (DR) is proposed in this letter. The dominate TE1δ1 mode of the rectangular DR is used as a magnetic dipole which can be differentially fed by the coplanar strip line (CPS). Thanks to the DR employment, the proposed antenna has several advantages such as compact size and flexible design which means the 3-D dimensions of the DR can be easily adjusted to cater for various applications. Meanwhile, the gain of the proposed DR quasi-Yagi antenna is higher than that of traditional electric dipole counterparts. Furthermore, since the DR driver is horizontally polarized, both the metal strip and DR can be used as a director for enhancing the end-fire gain. To verify the design concept, a prototype operating at the X-band is fabricated and measured. Good agreement between the simulated and measured results can be observed.
A 328.58 m drill core (XK12) was recovered from lacustrine–alluvial sediments in the Xingkai Basin, northeast China, with the aim of obtaining a high-resolution pollen record of East Asian winter monsoon (EAWM) evolution since 3.6 Ma. An index based on the pollen record of thermophilous trees and terrestrial herbs is used as an indicator of winter temperature conditions controlled by the EAWM, at the glacial–interglacial scale. Primary age control was established based on lithostratigraphy and magnetostratigraphy, and then the pollen index was correlated to the LR04 global benthic δ18O record and finally tuned to Earth orbital obliquity to produce a high-resolution astronomical time scale. The pollen record indicates that the EAWM underwent two stepwise enhancements at 2.8 and 1.6 Ma. These events are consistent with paleoclimatic records of mean quartz grain size from the Chinese Loess Plateau, and they are also in accord with the initiation and intensification of Northern Hemisphere glaciation. Our findings suggest that the variability of the EAWM since 3.6 Ma was primarily controlled by changes in global ice volume and climatic cooling.