We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Glutamatergic dysfunction has been implicated in sensory integration deficits in schizophrenia, yet how glutamatergic function contributes to behavioural impairments and neural activities of sensory integration remains unknown.
Methods
Fifty schizophrenia patients and 43 healthy controls completed behavioural assessments for sensory integration and underwent magnetic resonance spectroscopy (MRS) for measuring the anterior cingulate cortex (ACC) glutamate levels. The correlation between glutamate levels and behavioural sensory integration deficits was examined in each group. A subsample of 20 pairs of patients and controls further completed an audiovisual sensory integration functional magnetic resonance imaging (fMRI) task. Blood Oxygenation Level Dependent (BOLD) activation and task-dependent functional connectivity (FC) were assessed based on fMRI data. Full factorial analyses were performed to examine the Group-by-Glutamate Level interaction effects on fMRI measurements (group differences in correlation between glutamate levels and fMRI measurements) and the correlation between glutamate levels and fMRI measurements within each group.
Results
We found that schizophrenia patients exhibited impaired sensory integration which was positively correlated with ACC glutamate levels. Multimodal analyses showed significantly Group-by-Glutamate Level interaction effects on BOLD activation as well as task-dependent FC in a ‘cortico-subcortical-cortical’ network (including medial frontal gyrus, precuneus, ACC, middle cingulate gyrus, thalamus and caudate) with positive correlations in patients and negative in controls.
Conclusions
Our findings indicate that ACC glutamate influences neural activities in a large-scale network during sensory integration, but the effects have opposite directionality between schizophrenia patients and healthy people. This implicates the crucial role of glutamatergic system in sensory integration processing in schizophrenia.
Lower-crust-derived adakitic rocks in the Gangdese belt provide important constraints on the timing of Tibetan crustal thickening and on the relative contributions of magmatic and tectonic processes. Here we present geochronological and geochemical data for the Wangdui porphyritic monzogranites in the western Gangdese belt. Zircon U–Pb dating yields emplacement ages of 46–44 Ma. All samples have high Sr (321–599 ppm), low Yb (0.76–1.33 ppm) and Y (10.6–18.3 ppm) contents, with high La/Yb (51.1–72.3) and Sr/Y (21.0–51.4) ratios, indicating adakitic affinities. The low MgO (0.97–1.76 wt %), Cr (7.49–53.6 ppm) and Ni (4.75–29.1 ppm) contents, as well as high 87Sr/86Sr(i) (0.7143–0.7145), low ϵNd(t) (−10.4 to −9.8) and zircon ϵHf(t) (−17.7 to 0.4) values, suggest that the Wangdui pluton most likely originated from partial melting of the thickened ancient lower crust. In combination with previously published data, despite the east–west-trending heterogeneity of crustal composition in the Gangdese belt, the La/Yb ratios of magmatic rocks reveal that both western and eastern segments experienced remarkable crustal thickening in the Eocene. However, in contrast to the thickened juvenile lower crust in the eastern segment formed by the underplating of mantle-derived magmas, tectonic shortening plays a more crucial role in thickening of the ancient basement in western Gangdese. In fact, such Eocene-thickened ancient lower-crust-derived adakitic rocks are widely distributed in the central Himalayan–Tibetan orogen. This, together with the extensive development of fold–thrust belts, suggests that tectonic shortening might be the main mechanism accounting for the crustal thickening associated with the India–Asia collision.
In vivo transparent vessel segmentation is important to life science research. However, this task remains very challenging because of the fuzzy edges and the barely noticeable tubular characteristics of vessels under a light microscope. In this paper, we present a new machine learning method based on blood flow characteristics to segment the global vascular structure in vivo. Specifically, the videos of blood flow in transparent vessels are used as input. We use the machine learning classifier to classify the vessel pixels through the motion features extracted from moving red blood cells and achieve vessel segmentation based on a region-growing algorithm. Moreover, we utilize the moving characteristics of blood flow to distinguish between the types of vessels, including arteries, veins, and capillaries. In the experiments, we evaluate the performance of our method on videos of zebrafish embryos. The experimental results indicate the high accuracy of vessel segmentation, with an average accuracy of 97.98%, which is much more superior than other segmentation or motion-detection algorithms. Our method has good robustness when applied to input videos with various time resolutions, with a minimum of 3.125 fps.
Embryogenic callus induction and regeneration are useful in many aspects of plant biotechnology, especially in the functional characterization of economically important genes. However, in sugarcane, callus induction and regeneration vary across genotypes. Saccharum spontaneum is an important wild germplasm that confers disease resistance and stress tolerance to modern sugarcane cultivars, and its genome has been completely sequenced. The aim of this study was to investigate the effect of genetic variations on embryogenic callus induction and regeneration in S. spontaneum and to screen genotypes having high tissue culture susceptibility. The study was performed using nine genotypes of S. spontaneum and the following five parameters were assessed to determine the response of genotypes to embryogenic callus induction and regeneration: callus induction, embryogenic callus ratio, embryogenic callus induction, embryonic callus regeneration and regeneration capacity. All the genotypes varied significantly (P < 0.01) in all the parameters, except for embryonic callus regeneration, which was high (>80%) for all the genotypes. High broad-sense heritability (86.1–96.8%) indicated that genetic differences are the major source of genotypic variations. Callus induction was found to be strongly positively correlated with embryogenic callus induction (r = 0.890, P < 0.01) and regeneration capacity (r = 0.881, P < 0.01). Among the nine tested genotypes, VN2 was found to be the most responsive to tissue culture and could therefore be used to characterize functional genes in S. spontaneum. We also suggested an approach with potential applications in facilitating the rapid identification of sugarcane genotypes susceptible to tissue culture.
Supraglacial lakes and rivers dominate the storage and transport of meltwater on the southwest Greenland Ice Sheet (GrIS) surface. Despite functioning as interconnected hydrologic networks, supraglacial lakes and rivers are commonly studied as independent features, resulting in an incomplete understanding of their collective impact on meltwater storage and routing. We use Landsat 8 satellite imagery to assess the seasonal evolution of supraglacial lakes and rivers on the southwest GrIS during the 2015 melt season. Remotely sensed meltwater areas and volumes are compared with surface runoff simulations from three climate models (MERRA-2, MAR 3.6 and RACMO 2.3), and with in situ observations of proglacial discharge in the Watson River. We find: (1) at elevations >1600 m, 21% of supraglacial lakes and 28% of supraglacial rivers drain into moulins, signifying the presence of high-elevation surface-to-bed meltwater connections even during a colder-than-average melt season; (2) while supraglacial lakes dominate instantaneous surface meltwater storage, supraglacial rivers dominate total surface meltwater area and discharge; (3) the combined surface area of supraglacial lakes and rivers is strongly correlated with modeled surface runoff; and (4) of the three models examined here, MERRA-2 runoff yields the highest overall correlation with observed proglacial discharge in the Watson River.
Somatic cell nuclear transfer (SCNT) holds vast potential in agriculture. However, its applications are still limited by its low efficiency. Histone 3 lysine 9 trimethylation (H3K9me3) was identified as an epigenetic barrier for this. Histone demethylase KDM4D could regulate the level of H3K9me3. However, its effects on buffalo SCNT embryos are still unclear. Thus, we performed this study to explore the effects and underlying mechanism of KDM4D on buffalo SCNT embryos. The results revealed that compared with the IVF embryos, the expression level of KDM4D in SCNT embryos was significantly lower at 8- and 16-cell stage, while the level of H3K9me3 in SCNT embryos was significantly higher at 2-cell, 8-cell, and blastocyst stage. Microinjection of KDM4D mRNA could promote the developmental ability of buffalo SCNT embryos. Furthermore, the expression level of ZGA-related genes such as ZSCAN5B, SNAI1, eIF-3a, and TRC at the 8-cell stage was significantly increased. Meanwhile, the pluripotency-related genes like POU5F1, SOX2, and NANOG were also significantly promoted at the blastocyst stage. The results were reversed after KDM4D was inhibited. Altogether, these results revealed that KDM4D could correct the H3K9me3 level, increase the expression level of ZGA and pluripotency-related genes, and finally, promote the developmental competence of buffalo SCNT embryos.
Hypothermia (core temperature <36°C) during major surgeries could result in a number of adverse events such as surgical site infection, bleeding, and prolonged hospital stay. The incidence of intraoperative hypothermia was 44.3 percent in China in 2015, with only 10.7 percent of patients receiving effective hypothermia prevention measures during major surgeries. By systematically examining the adverse risks for patients using different warming measures (active and passive), our study discussed the potential of bringing the most effective one(s) into clinical guidelines.
Methods
Articles, ongoing trials and grey literatures were retrieved from PubMed, The Cochrane Library and Clinical Trials till February 2019. Bair HuggerTM (BH) was determined to be the reference group and all randomized controlled trials including BH were included. In the control group, we kept all possible warming measures. Adverse effect indicators were decided using scoping reviews and then applied in literature screening. Type (open/endoscopic) and length of surgery were included in sub-group analysis.
Results
A total of forty-two studies were included, with twenty-seven of them passive insulation measures and fifteen active measures. Compared with passive measures, BH had significant advantages, such as in surgical site infection (risk ratio [RR] = 0.13, 95% confidence interval [CI]: 0.05, 0.80), chills (RR = 0.37, 95% CI: 0.25, 0.54) and hospitalization stay (mean difference [MD]=−1.27d, 95% CI: -2.05, -0.48). Compared with active insulation measures, BH had no significant advantages. Patients with open or longer surgeries (≥2 hours) experienced higher risks.
Conclusions
Generally, an active warming system is more effective in lowering risks (e.g., hypothermia, surgical site infection, chills, length of stay) than passive ones, especially for patients going through non-endoscopic or longer surgeries. Among the active warming systems, BH does the same job as other active insulation measures. Given that the practice of peri-operative hypothermia prevention using active warming systems is not popular in China, the use of BH and other active insulation measures during major surgeries are recommended to improve the safety and potentially reduce the cost of treating those clinical adverse events.
Understanding the patterns of treatment response is critical for the treatment of patients with schizophrenia; one way to achieve this is through using a longitudinal dynamic process study design.
Aims
This study aims to explore the response trajectory of antipsychotics and compare the treatment responses of seven different antipsychotics over 6 weeks in patients with schizoprenia (trial registration: Chinese Clinical Trials Registry Identifier: ChiCTR-TRC-10000934).
Method
Data were collected from a multicentre, randomised open-label clinical trial. Patients were evaluated with the Positive and Negative Syndrome Scale (PANSS) at baseline and follow-up at weeks 2, 4 and 6. Trajectory groups were classified by the method of k-means cluster modelling for longitudinal data. Trajectory analyses were also employed for the seven antipsychotic groups.
Results
The early treatment response trajectories were classified into a high-trajectory group of better responders and a low-trajectory group of worse responders. The results of trajectory analysis showed differences compared with the classification method characterised by a 50% reduction in PANSS scores at week 6. A total of 349 patients were inconsistently grouped by the two methods, with a significant difference in the composition ratio of treatment response groups using these two methods (χ2 = 43.37, P < 0.001). There was no differential contribution of high- and low trajectories to different drugs (χ2 = 12.52, P = 0.051); olanzapine and risperidone, which had a larger proportion in the >50% reduction at week 6, performed better than aripiprazole, quetiapine, ziprasidone and perphenazine.
Conclusions
The trajectory analysis of treatment response to schizophrenia revealed two distinct trajectories. Comparing the treatment responses to different antipsychotics through longitudinal analysis may offer a new perspective for evaluating antipsychotics.
To investigate the cumulative effects of maternal supplementation with nucleotides in the form of uridine (UR) on fatty acid and amino acid constituents of neonatal piglets, fifty-two sows in late gestation were assigned randomly into the control (CON) group (fed a basal diet) or UR group (fed a basal diet with 150 g/t UR). Samples of neonates were collected during farrowing. Results showed that supplementing with UR in sows’ diet significantly decreased the birth mortality of pigs (P = 0·05), and increased serum total cholesterol, HDL and LDL of neonatal piglets (P < 0·05). Moreover, the amino acid profile of serum and liver of neonatal piglets was affected by the addition of UR in sows’ diets (P < 0·05). Furthermore, an up-regulation of mRNA expression of energy metabolism-related genes, including fatty acid elongase 5, fatty acid desaturase 1, hormone-sensitive lipase and cholesterol-7a-hydroxylase, was observed in the liver of neonates from the UR group. Additionally, a decrease in placental gene expression of excitatory amino acid transporters 2, excitatory amino acid transporter 3 and neutral AA transporter 1 in the UR group was concurrently observed (P < 0·05), and higher protein expression of phosphorylated protein kinase B, raptor, PPARα and PPARγ in placenta from the UR group was also observed (P < 0·05). Together, these results showed that maternal UR supplementation could regulate placental nutrient transport, largely in response to an alteration of mTORC1–PPAR signalling, thus regulating the nutrition metabolism of neonatal piglets and improving reproductive performance.
Birth weight influences not only brain development, but also mental health outcomes, including depression, but the underlying mechanism is unclear.
Methods.
The phenotypic data of 12,872–91,009 participants (59.18–63.38% women) from UK Biobank were included to test the associations between the birth weight, depression, and brain volumes through the linear and logistic regression models. As birth weight is highly heritable, the polygenic risk scores (PRSs) of birth weight were calculated from the UK Biobank cohort (154,539 participants, 56.90% women) to estimate the effect of birth weight-related genetic variation on the development of depression and brain volumes. Finally, the mediation analyses of step approach and mediation analysis were used to estimate the role of brain volumes in the association between birth weight and depression. All analyses were conducted sex stratified to assess sex-specific role in the associations.
Result.
We observed associations between birth weight and depression (odds ratio [OR] = 0.968, 95% confidence interval [CI] = 0.957–0.979, p = 2.29 × 10−6). Positive associations were observed between birth weight and brain volumes, such as gray matter (B = 0.131, p = 3.51 × 10−74) and white matter (B = 0.129, p = 1.67 × 10−74). Depression was also associated with brain volume, such as left thalamus (OR = 0.891, 95% CI = 0.850–0.933, p = 4.46 × 10−5) and right thalamus (OR = 0.884, 95% CI = 0.841–0.928, p = 2.67 × 10−5). Additionally, significant mediation effects of brain volume were found for the associations between birth weight and depression through steps approach and mediation analysis, such as gray matter (B = –0.220, p = 0.020) and right thalamus (B = –0.207, p = 0.014).
Conclusions.
Our results showed the associations among birth weight, depression, and brain volumes, and the mediation effect of brain volumes also provide evidence for the sex-specific of associations.
Schizotypy refers to schizophrenia-like traits below the clinical threshold in the general population. The pathological development of schizophrenia has been postulated to evolve from the initial coexistence of ‘brain disconnection’ and ‘brain connectivity compensation’ to ‘brain connectivity decompensation’.
Methods
In this study, we examined the brain connectivity changes associated with schizotypy by combining brain white matter structural connectivity, static and dynamic functional connectivity analysis of diffusion tensor imaging data and resting-state functional magnetic resonance imaging data. A total of 87 participants with a high level of schizotypal traits and 122 control participants completed the experiment. Group differences in whole-brain white matter structural connectivity probability, static mean functional connectivity strength, dynamic functional connectivity variability and stability among 264 brain sub-regions of interests were investigated.
Results
We found that individuals with high schizotypy exhibited increased structural connectivity probability within the task control network and within the default mode network; increased variability and decreased stability of functional connectivity within the default mode network and between the auditory network and the subcortical network; and decreased static mean functional connectivity strength mainly associated with the sensorimotor network, the default mode network and the task control network.
Conclusions
These findings highlight the specific changes in brain connectivity associated with schizotypy and indicate that both decompensatory and compensatory changes in structural connectivity within the default mode network and the task control network in the context of whole-brain functional disconnection may be an important neurobiological correlate in individuals with high schizotypy.
The aim of the present study was to investigate the effects of dietary Zn level on growth performance, Zn bioaccumulation, antioxidant capacity and innate immunity in juvenile mud crabs (Scylla paramamosain). Six semi-purified diets were formulated to contain dietary Zn levels of 44·5, 56·9, 68·5, 97·3, 155·6 or 254·7 mg/kg. Dietary Zn level significantly influenced percentage weight gain (PWG), with the highest observed in crabs fed the diet containing 97·3 mg/kg Zn. Tissue Zn concentrations significantly increased as dietary Zn levels increased from 44·5 to 254·7 mg/kg. Retention of Zn in hepatopancreas increased with dietary Zn levels up to 68·5 mg/kg and then significantly decreased. Moreover, inadequate dietary Zn (44·5 and 56·9 mg/kg) reduced antioxidation markers including total superoxide dismutase (SOD) and Cu/Zn SOD activities and total antioxidant level. Crabs fed the diet with 44·5 mg/kg Zn also showed significantly lower expression of genes involved in antioxidant status, such as Cu/Zn SOD, glutathione peroxidase, catalase and thioredoxin than those fed diets containing 68·5 and 97·3 mg/kg Zn. The highest activities of phenoloxidase and alkaline phosphatase were recorded in crabs fed the diets containing 68·5 and 97·3 mg/kg Zn. Expression levels of prophenoloxidase and toll-like receptor 2 were higher in crabs fed the 97·3 mg/kg Zn diet compared with crabs fed the other diets. Based on PWG alone, the optimal dietary Zn level was estimated to be 82·9 mg/kg, with 68·5 to 97·3 mg/kg recommended for maintaining optimal Zn bioaccumulation, oxidation resistance and innate immune response of juvenile mud crabs.
Disasters such as an earthquake, a flood, and an epidemic usually lead to large numbers of casualties accompanied by disruption of the functioning of local medical institutions. A rapid response of medical assistance and support is required. Mobile hospitals have been deployed by national and international organizations at disaster situations in the past decades, which play an important role in saving casualties and alleviating the shortage of medical resources. In this paper, we briefly introduce the types and characteristics of mobile hospitals used by medical teams in disaster rescue, including the aspects of structural form, organizational form, and mobile transportation. We also review the practices of mobile hospitals in disaster response and summarize the problems and needs of mobile hospitals in disaster rescue. Finally, we propose the development direction of mobile hospitals, especially on the development of intelligence, rapid deployment capabilities, and modularization, which provide suggestions for further research and development of mobile hospitals in the future.
In this research paper we filter and verify miRNAs which may target silent information regulator homolog 2 (SIRT2) gene and then describe the mechanism whereby miRNA-212 might regulate lipogenic genes in mammary epithelial cell lines via targeting SIRT2. Bioinformatics analysis revealed that the bovine SIRT2 gene is regulated by three miRNAs: miR-212, miR-375 and miR-655. The three miRNAs were verified and screened by qRT-PCR, western blot, and luciferase multiplex verification techniques and only miR-212 was shown to have a targeting relationship with SIRT2. The results of co-transfecting miR-212 and silencing RNA (siRNA) showed that by targeting SIRT2, miR-212 can regulate the expression of fatty acid synthetase (FASN) and sterol regulatory element binding factor 1 (SREBP1) but not peroxisome proliferator-activated receptor gamma (PPARγ). Measurement of triglyceride (TAG) content showed that miR-212 increased the fat content of mammary epithelial cell lines. The study indicates that miR-212 could target and inhibit the expression of the SIRT2 gene to promote lipogenesis in mammary epithelial cell lines.
Dietary habits have been implicated in the development and severity of non-alcoholic fatty liver disease (NAFLD). Several epidemiological studies attempted to assess the relationship between food groups and the likelihood of NAFLD, but these results were conflicting. The present meta-analysis was conducted to assess the association between food groups and the likelihood of NAFLD. Published literature was retrieved and screened from MEDLINE, Embase and Web of Science. Out of 7892 retrieved articles, twenty-four observational studies (fifteen cross-sectional studies and nine case–control studies) met our eligibility criteria and were finally included in this systematic review and meta-analysis. Consumption of both red meat and soft drinks contributed to a positive association with NAFLD. Inversely, nut consumption was negatively associated with NAFLD. There were no significant influences on the likelihood of NAFLD about consuming whole grains, refined grains, fish, fruits, vegetables, eggs, dairy products and legumes. This meta-analysis suggests that individuals who consumed more red meat and soft drinks may have a significantly increased likelihood of NAFLD, whereas higher nut intake may be negatively associated with NAFLD. Further prospective studies are required to assess the association between food patterns and NAFLD.
Psychiatric disorders are a group of complex psychological syndromes with high prevalence. Recent studies observed associations between altered plasma proteins and psychiatric disorders. This study aims to systematically explore the potential genetic relationships between five major psychiatric disorders and more than 3,000 plasma proteins.
Methods.
The genome-wide association study (GWAS) datasets of attention deficiency/hyperactive disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD) were driven from the Psychiatric GWAS Consortium. The GWAS datasets of 3,283 human plasma proteins were derived from recently published study, including 3,301 study subjects. Linkage disequilibrium score (LDSC) regression analysis were conducted to evaluate the genetic correlations between psychiatric disorders and each of the 3,283 plasma proteins.
Results.
LDSC observed several genetic correlations between plasma proteins and psychiatric disorders, such as ADHD and lysosomal Pro-X carboxypeptidase (p value = 0.015), ASD and extracellular superoxide dismutase (Cu-Zn; p value = 0.023), BD and alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 6 (p value = 0.007), MDD and trefoil factor 1 (p value = 0.011), and SCZ and insulin-like growth factor-binding protein 6 (p value = 0.011). Additionally, we detected four common plasma proteins showing correlation evidence with both BD and SCZ, such as tumor necrosis factor receptor superfamily member 1B (p value = 0.012 for BD, p value = 0.011 for SCZ).
Conclusions.
This study provided an atlas of genetic correlations between psychiatric disorders and plasma proteome, providing novel clues for pathogenetic and biomarkers, therapeutic studies of psychiatric disorders.
In this work, we optimized a clean, versatile, compact source of soft X-ray radiation $(E_{\text{x}\text{-}\text{ray}}\sim 3~\text{keV})$ with an yield per shot up to $7\times 10^{11}~\text{photons}/\text{shot}$ in a plasma generated by the interaction of high-contrast femtosecond laser pulses of relativistic intensity $(I_{\text{las}}\sim 10^{18}{-}10^{19}~\text{W}/\text{cm}^{2})$ with supersonic argon gas jets. Using high-resolution X-ray spectroscopy approaches, the dependence of main characteristics (temperature, density and ionization composition) and the emission efficiency of the X-ray source on laser pulse parameters and properties of the gas medium was studied. The optimal conditions, when the X-ray photon yield reached a maximum value, have been found when the argon plasma has an electron temperature of $T_{\text{e}}\sim 185~\text{eV}$, an electron density of $N_{\text{e}}\sim 7\times 10^{20}~\text{cm}^{-3}$ and an average charge of $Z\sim 14$. In such a plasma, a coefficient of conversion to soft X-ray radiation with energies $E_{\text{x}\text{-}\text{ray}}\sim 3.1\;(\pm 0.2)~\text{keV}$ reaches $8.57\times 10^{-5}$, and no processes leading to the acceleration of electrons to MeV energies occur. It was found that the efficiency of the X-ray emission of this plasma source is mainly determined by the focusing geometry. We confirmed experimentally that the angular distribution of the X-ray radiation is isotropic, and its intensity linearly depends on the energy of the laser pulse, which was varied in the range of 50–280 mJ. We also found that the yield of X-ray photons can be notably increased by, for example, choosing the optimal laser pulse duration and the inlet pressure of the gas jet.
Take-away milk tea (TAMT) is popular among young generation, and the numbers of retails of TAMT have increased dramatically in recent years in many cities in China. Non-dairy cream is one of the major ingredients of TAMT. Concerns have been raised whether trans-fat originated from non-dairy cream may have an influence on cardio-metabolic traits. We evaluated the associations between daily intake of TAMT with plasma lipid profiles among young Chinese adults, who are the major customers of TAMT retailers.
Materials and Methods
The study population was from the phase 1 sample (104 adults) of the Carbohydrate Alternatives and Metabolic Phenotypes study. Those lacking blood samples or with a body mass index less than 18.5 kg/m2 were excluded, therefore, a total of 88 subjects with an average age of 22.8 years were included in the analysis. A food frequency questionnaire with 27 items was used to collect the dietary intake. Generalized linear regression was used to evaluate the associations between TAMT intake and cholesterol levels.
Results
The estimated mean (± SE) of TAMT intake was 14.4 ± 3.4 ml/day, with apparent differences between males (8.8 ± 2.7 ml/day) and females (17.7 ± 5.1 ml/day). The mean of total cholesterol of the participants was 4.1 ± 0.1 mmol/L. After adjusted for age, sex, education attainment, smoking status, alcohol drink habit, and physical activity level, daily TAMT intake was positively associated with total cholesterol (beta ± SE = 0.0053 ± 0.0020, P = 0.011). The association was not substantially changed with further adjustment of body fat percentage (beta ± SE = 0.0053 ± 0.0020, P = 0.010). Similar associations were observed for high/low density lipoprotein cholesterols. When analysis was performed by sex, the association was only observed among females (beta ± SE = 0.0049 ± 0.0022, P = 0.031), but not in males (beta ± SE = 0.0022 ± 0.0060, P = 0.703).
Conclusion
In young adult Chinese, we observed an association between TAMT intake with plasma cholesterol level, independent of body adiposity.