We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Purple nutsedge (Cyperus rotundus L.) is one of the world’s resilient upland weeds, primarily spreading through its tubers. Its emergence in rice (Oryza sativa L.) fields has been increasing, likely due to changing paddy-farming practices. This study aimed to investigate how C. rotundus, an upland weed, can withstand soil flooding and become a problematic weed in rice fields. The first comparative analysis focused on the survival and recovery characteristics of growing and mature tubers of C. rotundus exposed to soil-flooding conditions. Notably, mature tubers exhibited significant survival and recovery abilities in these environments. Based on this observation, further investigation was carried out to explore the morphological structure, nonstructural carbohydrates, and respiratory mechanisms of mature tubers in response to prolonged soil flooding. Over time, the mature tubers did not form aerenchyma but instead gradually accumulated lignified sclerenchymal fibers, with lignin content also increasing. After 90 d, the lignified sclerenchymal fibers and lignin contents were 4.0 and 1.1 times higher than those in the no soil-flooding treatment. Concurrently, soluble sugar content decreased while starch content increased, providing energy storage, and alcohol dehydrogenase activity rose to support anaerobic respiration via alcohol fermentation. These results indicated that mature tubers survived in soil-flooding conditions by adopting a low-oxygen quiescence strategy, which involves morphological adaptations through the development of lignified sclerenchymal fibers, increased starch reserves for energy storage, and enhanced anaerobic respiration. This mechanism likely underpins the flooding tolerance of mature C. rotundus tubers, allowing them to endure unfavorable conditions and subsequently germinate and grow once flooding subsides. This study provides a preliminary explanation of the mechanism by which mature tubers of C. rotundus from the upland areas confer flooding tolerance, shedding light on the reasons behind this weed’s increasing presence in rice fields.
Purple nutsedge (Cyperus rotundus L.) is a globally distributed noxious weed that poses a significant challenge for control due to its fast and efficient propagation through the tuber, which is the primary reproductive organ. Gibberellic acid (GA3) has proven to be crucial for tuberization in tuberous plants. Therefore, understanding the relationship between GA3 and tuber development and propagation of C. rotundus will provide valuable information for controlling this weed. This study shows that the GA3 content decreases with tuber development, which corresponds to lower expression of bioactive GA3 synthesis genes (CrGA20ox, two CrGA3ox genes) and two upregulated GA3 catabolism genes (CrGA2ox genes), indicating that GA3 is involved in tuber development. Simultaneously, the expression of two CrDELLA genes and CrGID1 declines with tuber growth and decreased GA3, and yeast two-hybrid assays confirm that the GA3 signaling is DELLA-dependent. Furthermore, exogenous application of GA3 markedly reduces the number and the width of tubers and represses the growth of the tuber chain, further confirming the negative impact that GA3 has on tuber development and propagation. Taken together, these results demonstrate that GA3 is involved in tuber development and regulated by the DELLA-dependent pathway in C. rotundus and plays a negative role in tuber development and propagation.
Schistosomiasis has been subjected to extensive control efforts in the People's Republic of China (China) which aims to eliminate the disease by 2030. We describe baseline results of a longitudinal cohort study undertaken in the Dongting and Poyang lakes areas of central China designed to determine the prevalence of Schistosoma japonicum in humans, animals (goats and bovines) and Oncomelania snails utilizing molecular diagnostics procedures. Data from the Chinese National Schistosomiasis Control Programme (CNSCP) were compared with the molecular results obtained.
Sixteen villages from Hunan and Jiangxi provinces were surveyed; animals were only found in Hunan. The prevalence of schistosomiasis in humans was 1.8% in Jiangxi and 8.0% in Hunan determined by real-time polymerase chain reaction (PCR), while 18.3% of animals were positive by digital droplet PCR. The CNSCP data indicated that all villages harboured S. japonicum-infected individuals, detected serologically by indirect haemagglutination assay (IHA), but very few, if any, of these were subsequently positive by Kato-Katz (KK).
Based on the outcome of the IHA and KK results, the CNSCP incorporates targeted human praziquantel chemotherapy but this approach can miss some infections as evidenced by the results reported here. Sensitive molecular diagnostics can play a key role in the elimination of schistosomiasis in China and inform control measures allowing for a more systematic approach to treatment.
The safe closure of atrial septal defect with deficient posterior-inferior or inferior vena cava rim is a controversial issue. Few studies have been conducted on the closure of atrial septal defect with deficient posterior-inferior or inferior vena cava rim without fluoroscopy. This study evaluated the feasibility and safety of echocardiography-guided transcatheter closure of atrial septal defect with deficient posterior-inferior or inferior vena cava rim.
Methods:
The data of 136 patients who underwent transcatheter atrial septal defect closure without fluoroscopy from March 2017 to March 2020 were retrospectively analysed. The patients were classified into the deficient (n = 45) and sufficient (n = 91) posterior-inferior or inferior vena cava rim groups. Procedure and the follow-up results were compared between the two groups.
Results:
Atrial septal defect indexed diameter and the device indexed diameter in the deficient rim group were both larger than that in the sufficient rim group (22.12 versus 17.38 mm/m2, p < 0.001; 24.77 versus 21.21 mm/m2, p = 0.003, respectively). There was no significant difference in the success rate of occlusion between two groups (97.78% in the deficient rim group versus 98.90% in the sufficient rim group, p = 1.000). During follow-up, the incidence of severe adverse cardiac events was not statistically significant (p = 0.551).
Conclusions:
Atrial septal defect with deficient posterior-inferior or inferior vena cava rim can safely undergo transcatheter closure under echocardiography alone if precisely evaluated with transesophageal or transthoracic echocardiography and the size of the occluder is appropriate. The mid-term results after closure are similar to that for an atrial septal defect with sufficient rim.
The present study evaluated whether fat mass assessment using the triceps skinfold (TSF) thickness provides additional prognostic value to the Global Leadership Initiative on Malnutrition (GLIM) framework in patients with lung cancer (LC). We performed an observational cohort study including 2672 LC patients in China. Comprehensive demographic, disease and nutritional characteristics were collected. Malnutrition was retrospectively defined using the GLIM criteria, and optimal stratification was used to determine the best thresholds for the TSF. The associations of malnutrition and TSF categories with survival were estimated independently and jointly by calculating multivariable-adjusted hazard ratios (HR). Malnutrition was identified in 808 (30·2 %) patients, and the best TSF thresholds were 9·5 mm in men and 12 mm in women. Accordingly, 496 (18·6 %) patients were identified as having a low TSF. Patients with concurrent malnutrition and a low TSF had a 54 % (HR = 1·54, 95 % CI = 1·25, 1·88) greater death hazard compared with well-nourished individuals, which was also greater compared with malnourished patients with a normal TSF (HR = 1·23, 95 % CI = 1·06, 1·43) or malnourished patients without TSF assessment (HR = 1·31, 95 % CI = 1·14, 1·50). These associations were concentrated among those patients with adequate muscle mass (as indicated by the calf circumference). Additional fat mass assessment using the TSF enhances the prognostic value of the GLIM criteria. Using the population-derived thresholds for the TSF may provide significant prognostic value when used in combination with the GLIM criteria to guide strategies to optimise the long-term outcomes in patients with LC.
The reshocked turbulent Richtmyer–Meshkov (RM) mixing of two media is the most representative problem of more general and complex turbulent mixing induced by interfacial instabilities, broadly occurring in both nature and engineering applications. An accurate prediction of its evolving of spatial structure and mixing width (MW) is of fundamental importance. However, satisfactory prediction with the large-eddy simulation (LES) has not yet been achieved, even for the most important MW. In this paper, we innovatively solve this problem by combining the idea of the constrained large-eddy simulation (CLES), which succeeded previously only in classical single-medium turbulence, and our recently developed Reynolds averaged Navier–Stokes (RANS) model, which realized a satisfactory prediction of MW. Specifically, in our currently developed CLES model, with the aid of Reynolds decomposition, the unclosed subgrid scale (SGS) LES model is decomposed into two parts, i.e. the averaged and the fluctuating. The averaged part is dominated and modelled by the counterpart of our recently developed RANS model to accurately predict the MW, while the fluctuating part is modelled with the classical Smagorinsky model. Consequently, besides successfully capturing the three-dimensional large-scale structure of turbulence and the evolution of the (normalized) mixed mass, our newly proposed CLES also predicts a satisfactory MW with a very coarse grid. To the best of our knowledge, this is the first time that the LES can yield such a comparable result with experiment.
People with serious mental illness are at great risk of suicide, but little is known about the suicide rates among this population. We aimed to quantify the suicide rates among people with serious mental illness (bipolar disorder, major depression, or schizophrenia).
Methods
PubMed and Web of Science were searched to identify studies published from 1 January 1975 to 10 December 2020. We assessed English-language studies for the suicide rates among people with serious mental illness. Random-effects meta-analysis was used. Changes in follow-up time and the suicide rates were presented by a locally weighted scatter-plot smoothing (LOESS) curve. Suicide rate ratio was estimated for assessments of difference in suicide rate by sex.
Results
Of 5014 identified studies, 41 were included in this analysis. The pooled suicide rate was 312.8 per 100 000 person-years (95% CI 230.3–406.8). Europe was reported to have the highest pooled suicide rate of 335.2 per 100 000 person-years (95% CI 261.5–417.6). Major depression had the highest suicide rate of 534.3 per 100 000 person-years (95% CI 30.4–1448.7). There is a downward trend in suicide rate estimates over follow-up time. Excess risk of suicide in males was found [1.90 (95% CI 1.60–2.25)]. The most common suicide method was poisoning [21.9 per 100 000 person-years (95% CI 3.7–50.4)].
Conclusions
The suicide rates among people with serious mental illness were high, highlighting the requirements for increasing psychological assessment and monitoring. Further study should focus on region and age differences in suicide among this population.
The disease burden of infectious diarrhea cannot be underestimated. Its seasonal patterns indicate that weather patterns may play an important role and have an important effect on it. The objective of this study was to clarify the relationship between temperature and infectious diarrhea, and diarrhea-like illness.
Methods:
Distributed lag non-linear model, which was based on the definition of a cross-basis, was used to examine the effect.
Results:
Viral diarrhea usually had high incidence in autumn-winter and spring with a peak at -6°C; Norovirus circulated throughout the year with an insignificant peak at 8°C, while related bacteria usually tested positive in summer and peaked at 22°C. The lag-response curve of the proportion of diarrhea-like cases in outpatient and emergency cases revealed that at -6°C, with the lag days increasing, the proportion increased. Similar phenomena were observed at the beginning of the curves of virus and bacterial positive rate, showing that the risk increased as the lag days increased, peaking on days 16 and 9, respectively. The shape of lag-response curve of norovirus positive rate was different from others, presenting m-type, with 2 peaks on day 3 and day 18.
Conclusion:
Weather patterns should be taken into account when developing surveillance programs and formulating relevant public health intervention strategies.
Previous studies regarding associations between depressive symptoms and suicidality (suicidal ideation, plans and attempts) have usually employed a variable-centred approach, without considering the individual variance in time-varying changes of depressive symptoms. Through 10-year follow-up of a large cohort of Chinese adolescents exposed to the 2008 Wenchuan earthquake, this study examined whether individual variance in depressive symptoms during the early phases post-earthquake could generate different suicidality outcomes in young adulthood.
Methods
A total of 1357 Chinese adolescents exposed to the Wenchuan earthquake were surveyed on depressive symptoms and other variables at 6, 18 and 30 months post-earthquake. In total, 799 participants responded to the 10-year follow-up and completed an online survey covering suicidality and other variables. The analytic sample was 744 participants who had valid data on depressive symptoms and suicidality. Data were analysed using logistic regressions.
Results
Prevalence estimates of past-year suicidal ideation, suicide plans and suicide attempts measured at 10 years post-earthquake were found to be 10.8%, 7.3% and 3.0%, respectively. Five trajectories of depressive symptoms were classified: resistance (54.4%), chronicity (13.3%), recovery (10.4%), delayed dysfunction (12.0%) and relapsing/remitting (10.0%). After controlling for covariates, whole-sample regressions revealed only the relapsing/remitting depressive trajectory remained significantly predictive of suicidality. Moreover, males not females in the chronic group were more likely to have suicide plans.
Conclusions
The findings highlight the importance of detecting disaster survivors with different trajectories of mental status and providing with them individualised and effective mental health services, to decrease their risk of suicidality in the future.
Little is known about the trend and predictors of 21-year mortality and suicide patterns in persons with schizophrenia.
Aims
To explore the trend and predictors of 21-year mortality and suicide in persons with schizophrenia in rural China.
Method
This longitudinal follow-up study included 510 persons with schizophrenia who were identified in a mental health survey of individuals (≥15 years old) in 1994 in six townships of Xinjin County, Chengdu, China, and followed up in three waves until 2015. Kaplan–Meier survival analysis and Cox hazard regressions were conducted.
Results
Of the 510 participants, 196 died (38.4% mortality) between 1994 and 2015; 13.8% of the deaths (n = 27) were due to suicide. Life expectancy was lower for men than for women (50.6 v. 58.5 years). Males consistently showed higher rates of mortality and suicide than females. Older participants had higher mortality (hazard ratio HR = 1.03, 95% CI 1.01–1.05) but lower suicide rates (HR = 0.95, 95% CI 0.93–0.98) than their younger counterparts. Poor family attitudes were associated with all-cause mortality and death due to other causes; no previous hospital admission and a history of suicide attempts independently predicted death by suicide.
Conclusions
Our findings suggest there is a high mortality and suicide rate in persons with schizophrenia in rural China, with different predictive factors for mortality and suicide. It is important to develop culture-specific, demographically tailored and community-based mental healthcare and to strengthen family intervention to improve the long-term outcome of persons with schizophrenia.
In higher plants, fertilization induces many structural and physiological changes in the fertilized egg that reflect the transition from the haploid female gamete to the diploid zygote – the first cell of the sporophyte. After fusion of the egg nucleus with the sperm nucleus, many molecular changes occur in the zygote during the process of zygote activation during embryogenesis. The zygote originates from the egg, from which some pre-stored translation initiation factors transfer into the zygote and function during zygote activation. This indicates that the control of zygote activation is pre-set in the egg. After the egg and sperm nuclei fuse, gene expression is activated in the zygote, and paternal and maternal gene expression patterns are displayed. This highlights the diversity of zygotic genome activation in higher plants. In addition to new gene expression in the zygote, some genes show quantitative changes in expression. The asymmetrical division of the zygote produces an apical cell and a basal cell that have different destinies during plant reconstruction; these destinies are determined in the zygote. This review describes significant advances in research on the mechanisms controlling zygote activation in higher plants.
For a given set
$S\subseteq \mathbb {Z}_m$
and
$\overline {n}\in \mathbb {Z}_m$
, let
$R_S(\overline {n})$
denote the number of solutions of the equation
$\overline {n}=\overline {s}+\overline {s'}$
with ordered pairs
$(\overline {s},\overline {s'})\in S^2$
. We determine the structure of
$A,B\subseteq \mathbb {Z}_m$
with
$|(A\cup B)\setminus (A\cap B)|=m-2$
such that
$R_{A}(\overline {n})=R_{B}(\overline {n})$
for all
$\overline {n}\in \mathbb {Z}_m$
, where m is an even integer.
A one-dimensional steady-state model for stimulated Raman backscatter (SRS) and stimulated Brillouin backscatter (SBS) processes in laser-irradiated plasmas is presented. Based on a novel “predictor-corrector” method, the model is capable to deal with broadband scattered light and inhomogeneous plasmas, exhibiting robustness and high efficiency. Influences of the electron density and temperature on the linear gains of both SRS and SBS are investigated, which indicates that the SRS gain is more sensitive to the electron density and temperature than that of the SBS. For the low-density case, the SBS dominates the scattering process, while the SRS exhibits much higher reflectivity in the high-density case. The nonlinear saturation mechanisms and competition between SRS and SBS are included in our model by a phenomenological method. The typical anti-correlation between SRS and SBS versus electron density is reproduced in the model. Calculations of the reflectivities are qualitatively in agreement with the typical results of experiments and simulations.
Maternal one-carbon metabolism during pregnancy is crucial for fetal development and programming by DNA methylation. However, evidence on one-carbon biomarkers other than folate is lacking. We, therefore, investigated whether maternal plasma methyl donors, that is, choline, betaine and methionine, are associated with birth outcomes. Blood samples were obtained from 115 women during gestation (median 26·3 weeks, 90 % range 22·7–33·0 weeks). Plasma choline, betaine, methionine and dimethylglycine were measured using HPLC-tandem MS. Multivariate linear and logistic regression models were used to estimate the association between plasma biomarkers and birth weight, birth length, the risk of small-for-gestational-age and large-for-gestational-age (LGA). Higher level of maternal betaine was associated with lower birth weight (–130·3 (95 % CI –244·8, –15·9) per 1 sd increment for log-transformed betaine). Higher maternal methionine was associated with lower risk of LGA, and adjusted OR, with 95 % CI for 1 sd increase in methionine concentration was 0·44 (95 % CI 0·21, 0·89). Stratified analyses according to infant sex or maternal plasma homocysteine status showed that reduction in birth weight in relation to maternal betaine was only limited to male infants or to who had higher maternal homocysteine status (≥5·1 µmol/l). Higher maternal betaine status was associated with reduced birth weight. Maternal methionine was inversely associated with LGA risk. These findings are needed to be replicated in future larger studies.
Environment can impact the wear behavior of metals and alloys substantially. The tribological properties of Al0.6CoCrFeNi high-entropy alloys (HEAs) were investigated in ambient air, deionized water, simulated acid rain, and simulated seawater conditions at frequencies of 2–5 Hz. The as-cast alloy was composed of simple face-centered cubic and body-centered cubic phases. The wear rate of the as-cast HEA in the ambient air condition was significantly higher than that in the liquid environment. The wear resistance in seawater was superior to that in ambient air, deionized water, and acid rain. Both the friction coefficient and wear rate in seawater were the lowest due to the formation of oxidation film, lubrication, and corrosion action in solution. The dominant wear mechanism in the ambient air condition and deionized water was abrasive wear, delamination wear, and oxidative wear. By contrast, the wear mechanism in acid rain and seawater was mainly corrosion wear, adhesive wear, abrasive wear, and oxidative wear.
To investigate the protein-sparing effect of α-lipoic acid (LA), experimental fish (initial body weight: 18·99 (sd 1·82) g) were fed on a 0, 600 or 1200 mg/kg α-LA diet for 56 d, and hepatocytes were treated with 20 μm compound C, the inhibitor of AMP kinase α (AMPKα), treated for 30 min before α-LA treatment for 24 h. LA significantly decreased lipid content of the whole body and other tissues (P<0·05), and it also promoted protein deposition in vivo (P<0·05). Further, dietary LA significantly decreased the TAG content of serum and increased the NEFA content of serum (P<0·05); however, there were no significant differences among all groups in the hepatopancreas and muscle (P>0·05). Consistent with results from the experiment in vitro, LA activated phosphorylation of AMPKα and notably increased the protein content of adipose TAG lipase in intraperitoneal fat, hepatopancreas and muscle in vivo (P<0·05). Meanwhile, LA significantly up-regulated the mRNA expression of genes involved in fatty acid β-oxidation in the same three areas, and LA also obviously down-regulated the mRNA expression of genes involved in amino acid catabolism in muscle (P<0·05). Besides, it was observed that LA significantly activated the mammalian target of rapamycin (mTOR) pathway in muscle of experimental fish (P<0·05). LA could promote lipolysis and fatty acid β-oxidation via increasing energy supply from lipid catabolism, and then, it could economise on the protein from energy production to increase protein deposition in grass carp. Besides, LA might directly promote protein synthesis through activating the mTOR pathway.
Mastery of strengthening strategies to achieve high-capacity anodes for lithium-ion batteries can shed light on understanding the nature of diffusion-induced stress and offer an approach to use submicro-sized materials with an ultrahigh capacity for large-scale batteries. Here, we report solute strengthening in a series of silicon (Si)–germanium (Ge) alloys. When the larger solute atom (Ge) is added to the solvent atoms (Si), a compressive stress is generated in the vicinity of Ge atoms. This local stress field interacts with resident dislocations and subsequently impedes their motion to increase the yield stress in the alloys. The addition of Ge into Si substantially improves the capacity retention, particularly in Si0.50Ge0.50, aligning with literature reports that the Si/Ge alloy showed a maximum yield stress in Si0.50Ge0.50. In situ X-ray diffraction studies on the Si0.50Ge0.50 electrode show that the phase change undergoes three subsequent steps during the lithiation process: removal of surface oxide layer, formation of cluster-size Lix(Si,Ge), and formation of crystalline Li15(Si,Ge)4. Furthermore, the lithiation process starts from higher index facets, i.e., (220) and (311), then through the low index facet (111), suggesting the orientation-dependence of the lithiation process in the Si0.50Ge0.50 electrode.