We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study investigates the dynamics of low-viscosity nanodroplets impacting surfaces with static contact angles from θ = 73° to 180° via molecular dynamics (MD) simulations. Two typical morphologies of impacting nanodroplets are observed at the maximum spreading state, a Hertz-ball-like in a low-Weber-number range and a thin-film-like in a high-Weber-number range. Only inertial and capillary forces dominate the impact for the former, whereas viscous force also becomes dominant for the latter. Regardless of morphologies at the maximum spreading state, the ratio of spreading time to contact time always remains constant on an ideal superhydrophobic surface with θ = 180°. With the help of different kinematic approximations of the spreading time and scaling laws of the contact time, scaling laws of the maximum spreading factor ${\beta _{max}}\sim W{e^{1/5}}$ in the low-Weber-number range (capillary regime) and ${\beta _{max}}\sim W{e^{2/3}}R{e^{ - 1/3}}$ (or ${\beta _{max}}\sim W{e^{1/2}}O{h^{1/3}}$) in the high-Weber-number range (cross-over regime) are obtained. Here, We, Re, and Oh are the Weber number, Reynolds number, and Ohnesorge number, respectively. Although the scaling laws are proposed only for the ideal superhydrophobic surface, they are tested valid for θ over 73° owing to the ignorable zero-velocity spreading effect. Furthermore, combining the two scaling laws leads to an impact number, $W{e^{3/10}}O{h^{1/3}} = 2.1$. This impact number can be used to determine whether viscous force is ignorable for impacting nanodroplets, thereby distinguishing the capillary regime from the cross-over regime.
The wheat aphid Sitobion miscanthi (CWA) is an important harmful pest in wheat fields. Insecticide application is the main method to effectively control wheat aphids. However, CWA has developed resistance to some insecticides due to its extensive application, and understanding resistance mechanisms is crucial for the management of CWA. In our study, a new P450 gene, CYP4CJ6, was identified from CWA and showed a positive response to imidacloprid and thiamethoxam. Transcription of CYP4CJ6 was significantly induced by both imidacloprid and thiamethoxam, and overexpression of CYP4CJ6 in the imidacloprid-resistant strain was also observed. The sensitivity of CWA to these two insecticides was increased after the knockdown of CYP4CJ6. These results indicated that CYP4CJ6 could be associated with CWA resistance to imidacloprid and thiamethoxam. Subsequently, the posttranscriptional regulatory mechanism was assessed, and miR-316 was confirmed to participate in the posttranscriptional regulation of CYP4CJ6. These results are crucial for clarifying the roles of P450 in the resistance of CWA to insecticides.
We describe an extraordinarily preserved non-trilobite artiopod Bailongia longicaudata gen. et sp. nov. from the Cambrian Stage 4 Guanshan Biota in Yiliang, Kunming of the Yunnan Province in China. Its exoskeleton consists of a large semi-elliptical cephalon with paired lateral posterior eyes, nine tapering homonomous tergites and a long slender tailspine. Appendages include paired small antennae, at least three pairs of post-antennal cephalic limbs, and trunk biramous limbs consisting of an endopod and an exopod with lamellae. B. longicaudata does not conform to any taxon within Artiopoda, although the eyes invite comparisons with Xandarella spectaculum, Sinoburius lunaris and Phytophilaspis. Parsimony analyses indicate Bailongia is a member of Artiopoda and cannot be readily accommodated within any of the major artiopod clades.
The effects of chordwise deformation and the half-amplitude asymmetry on the hydrodynamic performance and vortex dynamics of batoid fish have been numerically investigated, in which the two parameters were represented by the wavenumber ($W$) and the ratio of the half-amplitude above the longitudinal axis to that below ($HAR$). Fin kinematics were prescribed based on biological data. Simulations were conducted using the immersed boundary method. It was found that moderate chordwise deformation enhances the thrust, saves the power and increases the efficiency. A large $HAR$ can also increase thrust performance. By using the derivative-moment transformation theory at several subdomains to capture the local vortical structures and a force decomposition, it was shown that, at high Strouhal numbers ($St$), the tip vortex is the main source of thrust, whereas the leading-edge vortex (LEV) and trailing-edge vortex weaken the thrust generation. However, at lower $St$, the LEV would enhance the thrust. The least deformation ($W=0$) leads to the largest effective angle of attack, and thus the strongest vortices. However, moderate deformation ($W=0.4$) has an optimal balance between the performance enhancement and the opposite effect of different local structures. The performance enhancement of $HAR$ was also due to the increase of the vortical contributions. This work provides a new insight into the role of vortices and the force enhancement mechanism in aquatic swimming.
Chronic inflammation exerts pleiotropic effects in the aetiology and progression of chronic obstructive pulmonary disease (COPD). Glucosamine is widely used in many countries and may have anti-inflammatory properties. We aimed to prospectively evaluate the association of regular glucosamine use with incident COPD risk and explore whether such association could be modified by smoking in the UK Biobank cohort, which recruited more than half a million participants aged 40–69 years from across the UK between 2006 and 2010. Cox proportional hazards models with adjustment for potential confounding factors were used to calculate hazard ratios (HR) as well as 95 % CI for the risk of incident COPD. During a median follow-up of 8·96 years (interquartile range 8·29–9·53 years), 9016 new-onset events of COPD were documented. We found that the regular use of glucosamine was associated with a significantly lower risk of incident COPD with multivariable adjusted HR of 0·80 (95 % CI, 0·75, 0·85; P < 0·001). When subgroup analyses were performed by smoking status, the adjusted HR for the association of regular glucosamine use with incident COPD were 0·84 (0·73, 0·96), 0·84 (0·77, 0·92) and 0·71 (0·62, 0·80) among never smokers, former smokers and current smokers, respectively. No significant interaction was observed between glucosamine use and smoking status (Pfor interaction = 0·078). Incident COPD could be reduced by 14 % to 84 % through a combination of regular glucosamine use and smoking cessation.
Cytochrome P450 monooxygenases play a key role in pest resistance to insecticides by detoxification. Four new P450 genes, CYP6AS160, CYP6AS161, CYP4AB73 and CYP4G232 were identified from Solenopsis invicta. CYP6AS160 was highly expressed in the abdomen and its expression could be induced significantly with exposure to fipronil, whereas CYP4AB73 was not highly expressed in the abdomen and its expression could not be significantly induced following exposure to fipronil. Expression levels of CYP6AS160 and CYP4AB73 in workers were significantly higher than that in queens. RNA interference-mediated gene silencing by feeding on double-stranded RNA (dsRNA) found that the levels of this transcript decreased (by maximum to 64.6%) when they fed on CYP6AS160-specific dsRNA. Workers fed dsCYP6AS160 had significantly higher mortality after 24 h of exposure to fipronil compared to controls. Workers fed dsCYP6AS160 had reduced total P450 activity of microsomal preparations toward model substrates p-nitroanisole. However, the knockdown of a non-overexpressed P450 gene, CYP4AB73 did not lead to an increase of mortality or a decrease of total P450 activity. The knockdown effects of CYP6AS160 on worker susceptibility to fipronil, combined with our other findings, indicate that CYP6AS160 is responsible for detoxification of fipronil. Feeding insects dsRNA may be a general strategy to trigger RNA interference and may find applications in entomological research and in the control of insect pests in the field.
No relevant studies have yet been conducted to explore which measurement can best predict the survival time of patients with cancer cachexia. This study aimed to identify an anthropometric measurement that could predict the 1-year survival of patients with cancer cachexia. We conducted a nested case–control study using data from a multicentre clinical investigation of cancer from 2013 to 2020. Cachexia was defined using the Fearon criteria. A total of 262 patients who survived less than 1 year and 262 patients who survived more than 1 year were included in this study. Six candidate variables were selected based on clinical experience and previous studies. Five variables, BMI, mid-arm circumference, mid-arm muscle circumference, calf circumference and triceps skin fold (TSF), were selected for inclusion in the multivariable model. In the conditional logistic regression analysis, TSF (P = 0·014) was identified as a significant independent protective factor. A similar result was observed in all patients with cancer cachexia (n 3084). In addition, a significantly stronger positive association between TSF and the 1-year survival of patients with cancer cachexia was observed in participants aged > 65 years (OR: 0·94; 95 % CI 0·89, 0·99) than in those aged ≤ 65 years (OR: 0·96; 95 % CI 0·93, 0·99; Pinteraction = 0·013) and in participants with no chronic disease (OR: 0·92; 95 % CI 0·87, 0·97) than in those with chronic disease (OR: 0·97; 95 % CI 0·94, 1·00; Pinteraction = 0·049). According to this study, TSF might be a good anthropometric measurement for predicting 1-year survival in patients with cancer cachexia.
The political autonomy of Chinese provinces derives from their economic independence. After the 2008 economic crisis, budget deficits increased significantly in most Chinese provinces, making them more reliant on financial support from Beijing. Provinces suffering high deficits will lose their political clout in both local and national politics. Therefore, provinces with large deficits tend to be less resistant to the enforcement of the law of avoidance and underrepresented in the Central Committee of the Chinese Communist Party. We find that in provincial standing committees, the members who are native or have more birthplace ties are more likely to be ranked behind the outsiders, especially so in provinces with a high level of deficits. We also find that provincial-standing-committee members from high-deficit provinces have a low possibility to obtain seats in the party's Central Committee. These findings confirm the close relationship between economic independence and political autonomy of Chinese provinces. In addition, we find that the logic of economic independence cannot depict the whole picture and that regional pluralism is also an important concern when the party manages its provincial leadership teams.
Accurate control and measurement of real-time sample temperature are critical for the understanding and interpretation of the experimental results from in situ heating experiments inside environmental transmission electron microscope (ETEM). However, quantifying the real-time sample temperature remains a challenging task for commercial in situ TEM heating devices, especially under gas conditions. In this work, we developed a home-made micro-electrical-mechanical-system (MEMS) heater with unprecedented small temperature gradient and thermal drift, which not only enables the temperature evolution caused by gas injection to be measured in real-time but also makes the key heat dissipation path easier to model to theoretically understand and predict the temperature decrease. A new parameter termed as “gas cooling ability (H)”, determined purely by the physical properties of the gas, can be used to compare and predict the gas-induced temperature decrease by different gases. Our findings can act as a reference for predicting the real temperature for in situ heating experiments without closed-loop temperature sensing capabilities in the gas environment, as well as all gas-related heating systems.
A multicenter study of sharps injuries (SIs) and other blood or body fluid (OBBF) exposures was conducted among 33,156 healthcare workers (HCWs) from 175 hospitals in Anhui, China. In total, 12,178 HCWs (36.7%) had experienced at least 1 SI in the previous 12 months and 8,116 HCWs (24.5%) had experienced at least 1 OBBF exposure during the previous 12 months.
This article provides new evidence on the housing-wealth effect on consumption using household panel data. A key advantage in studying the Chinese housing market is the absence of the collateral channel because households are prohibited from withdrawing housing equity. The results show that for every 1% increase in housing wealth, household consumption increases by 0.14%, suggesting an implied marginal propensity to consume out of housing wealth of 0.023. Further, we find that this marginal propensity to consume is the largest among employees who face greater income uncertainty, suggesting that precautionary-saving motives are driving the results.
The high overall plant-based diet index (PDI) is considered to protect against type 2 diabetes in the general population. However, whether the PDI affects gestational diabetes mellitus (GDM) risk among pregnant women is still unclear. We evaluated the association between PDI and GDM risk based on a Chinese large prospective cohort – the Tongji Maternal and Child Health Cohort. Dietary data were collected at 13–28 weeks of pregnancy by a validated semi-quantitative FFQ. The PDI was obtained by assigning plant food groups positive scores while assigning animal food groups reverse scores. GDM was diagnosed by a 75 g 2-h oral glucose tolerance test at 24–28 weeks of gestation. Logistic regression models were fitted to estimate OR of GDM, with associated 95 % CI, comparing women in different PDI quartiles. Among the total 2099 participants, 169 (8·1 %) were diagnosed with GDM. The PDI ranged from 21·0 to 52·0 with a median of 36·0 (interquartile range (IQR) 33·0–39·0). After adjusting for social-demographic characteristics and lifestyle factors etc., the participants with the highest quartile of PDI were associated with 57 % reduced odds of GDM compared with women in the lowest quartile of PDI (adjusted OR 0·43; 95 % CI 0·24, 0·77; Pfor trend = 0·005). An IQR increment in PDI was associated with 29 % decreased odds of GDM (adjusted OR 0·71; 95 % CI 0·56, 0·90). Findings suggest that adopting a plant-based diet during pregnancy could reduce GDM risk among Chinese women, which may be valuable for dietary counselling during pregnancy.
Power scaling based on traditional ytterbium-doped fibers (YDFs) is limited by optical nonlinear effects and transverse mode instability (TMI) in high-power fiber lasers. Here, we propose a novel long tapered fiber with a constant cladding and tapered core (CCTC) along its axis direction. The tapered-core region of the fiber is designed to enhance the stimulated Raman scattering (SRS) threshold and suppress higher-order mode resonance in the laser cavity. The CCTC YDF was fabricated successfully with a modified chemical vapor deposition (MCVD) method combined with solution doping technology, which has a cladding diameter of 400 μm and a varying core with a diameter of ~24 μm at both ends and ~31 μm in the middle. To test the performance of the CCTC fiber during high-power operation, an all-fiber laser oscillator based on a CCTC YDF was investigated experimentally. As a result, a maximum output power of 3.42 kW was achieved with an optical-to-optical efficiency of 55.2%, although the TMI effect was observed at an output power of ~3.12 kW. The measured beam quality (M2 factor) was ~1.7, and no sign of the Raman component was observed in the spectrum. We believe that CCTC YDF has great potential to simultaneously mitigate the SRS and TMI effects, and further power scaling is promising by optimizing the structure of the YDF.
Sodium niobate (NaNbO3)-based dielectrics have received much attention for energy storage applications due to their low-cost, lightweight, and nontoxic nature. The field-induced metastable ferroelectric phase in NaNbO3-based dielectrics, however, leads to a large hysteresis of the polarization–electric field (P–E) loops and hence deteriorate the energy storage performance. In this study, the hysteresis was successfully reduced by introducing Bi3+ and Ti4+ into A-site and B-site of NaNbO3, respectively. MnO2 addition was added to further increase the ceramic density and enhance the cycling reliability. As a result, a high recoverable energy density of 4.3 J/cm3 and a high energy efficiency of 90% were simultaneously achieved in the ceramic capacitor at an applied electric field of 360 kV/cm. Of particular importance is that the ceramic capacitor exhibits a stable energy storage properties over a wide temperature range of −70 to 170 °C, with much improved electric cycling reliability up to 105 cycles.
Early life stress has been associated with emotional dysregulations and altered architecture of limbic-prefrontal brain systems engaged in emotional processing. Serotonin regulates both, developmental and experience-dependent neuroplasticity in these circuits. Central serotonergic biosynthesis rates are regulated by Tryptophan hydroxylase 2 (TPH2) and transgenic animal models suggest that TPH2-gene associated differences in serotonergic signaling mediate the impact of aversive early life experiences on a phenotype characterized by anxious avoidance.
Methods
The present study employed an imaging genetics approach that capitalized on individual differences in a TPH2 polymorphism (703G/T; rs4570625) to determine whether differences in serotonergic signaling modulate the effects of early life stress on brain structure and function and punishment sensitivity in humans (n = 252).
Results
Higher maltreatment exposure before the age of 16 was associated with increased gray matter volumes in a circuitry spanning thalamic-limbic-prefrontal regions and decreased intrinsic communication in limbic-prefrontal circuits selectively in TT carriers. In an independent replication sample, associations between higher early life stress and increased frontal volumes in TT carriers were confirmed. On the phenotype level, the genotype moderated the association between higher early life stress exposure and higher punishment sensitivity. In TT carriers, the association between higher early life stress exposure and punishment sensitivity was critically mediated by increased thalamic-limbic-prefrontal volumes.
Conclusions
The present findings suggest that early life stress shapes the neural organization of the limbic-prefrontal circuits in interaction with individual variations in the TPH2 gene to promote a phenotype characterized by facilitated threat avoidance, thus promoting early adaptation to an adverse environment.
Little is known about poverty trends in people with severe mental illness (SMI) over a long time span, especially under conditions of fast socioeconomic development.
Aims
This study aims to unravel changes in household poverty levels among people with SMI in a fast-changing rural community in China.
Method
Two mental health surveys, using ICD-10, were conducted in the same six townships of Xinjin county, Chengdu, China. A total of 711 and 1042 people with SMI identified in 1994 and 2015, respectively, participated in the study. The Foster-Greer-Thorbecke poverty index was adopted to measure the changes in household poverty. These changes were decomposed into effects of growth and equity using a static decomposition method. Factors associated with household poverty in 1994 and 2015 were examined and compared by regression analyses.
Results
The proportion of poor households, as measured by the headcount ratio, increased significantly from 29.8% in 1994 to 39.5% in 2015. Decomposition showed that poverty in households containing people with SMI had worsened because of a redistribution effect. Factors associated with household poverty had also changed during the study period. The patient's age, ability to work and family size were of paramount significance in 2015.
Conclusions
This study shows that the levels of poverty faced by households containing people with SMI has become more pressing with China's fast socioeconomic development. It calls for further integration of mental health recovery and targeted antipoverty interventions for people with SMI as a development priority.
Fat-soluble vitamins during pregnancy are important for fetal growth and development. The present study aimed at exploring the association between vitamin A, E and D status during pregnancy and birth weight. A total of 19 640 women with singleton deliveries from a retrospective study were included. Data were collected by the hospital electronic information system. Maternal serum vitamin A, E and D concentrations were measured during pregnancy. Logistic regression was performed to estimate the association between the vitamin status and low birth weight (LBW) or macrosomia. Women with excessive vitamin E were more likely to have macrosomia (OR 1·30, 95 % CI 1·07, 1·59) compared with adequate concentration. When focusing on Z scores, there was a positive association between vitamin E and macrosomia in the first (OR 1·07, 95 % CI 1·00, 1·14), second (OR 1·27, 95 % CI 1·11, 1·46) and third (OR 1·28, 95 % CI 1·06, 1·54) trimesters; vitamin A was positively associated with LBW in the first (OR 1·14, 95 % CI 1·01, 1·29), second (OR 1·31, 95 % CI 1·05, 1·63) and third (OR 2·00, 95 % CI 1·45, 2·74) trimesters and negatively associated with macrosomia in the second (OR 0·79, 95 % CI 0·70, 0·89) and third (OR 0·77, 95 % CI 0·62, 0·95) trimesters. The study identified that high concentrations of vitamin E are associated with macrosomia. Maintaining a moderate concentration of vitamin A during pregnancy might be beneficial to achieve optimal birth weight. Further studies to explore the mechanism of above associations are warranted.
Phase-resolved wave simulation and direct numerical simulation of turbulence are performed to investigate the surface wave effects on the energy transfer in overlying turbulent flow. The JONSWAP spectrum is used to initialize a broadband wave field. The nonlinear wave field is simulated using a high-order spectral method, and the resultant wave surface provides the bottom boundary conditions for direct numerical simulation of the overlying turbulent flow. Two wave ages of $c_{p}/u_{\ast }=2$ and 25 are considered, corresponding to slow and fast wave fields, respectively, where $c_{p}$ denotes the celerity of the peak wave and $u_{\ast }$ denotes the friction velocity. The energy transfer of turbulent motions in the presence of surface waves is investigated through the spectral analysis of the two-point correlation transport equation. It is found that the production term has an extra peak at the dominant wavelength scale in the vicinity of the surface, and the energy transported to the surface via viscous and spatial turbulent transport is enhanced in the region of $y^{+}<10$. The presence of surface waves results in an inverse turbulent energy cascade in the near-surface region, where small-scale wave-related motions transfer energy back to the dominant wavelength scale. Pressure-related terms reflecting the spatial and inter-component energy transfer are strongly dependent on the wave age. Furthermore, triadic interaction analysis reveals that the energy influx at the dominant wavelength scale is due to the contribution of the neighbouring streamwise turbulent motions, and those at the harmonic wavelength scales contribute the most.
Palaeoscolecid worms are widespread in the Palaeozoic period, and are of key importance to understanding the emergence of moulting animals (superphylum Ecdysozoa). However, palaeoscolecids lack a diagnostic set of morphological characters, and as such are unlikely to form a natural (monophyletic) group. Consequently, detailed anatomical study of individual taxa is necessary in order to evaluate the phylogenetic significance of palaeoscolecids. New specimens of Mafangscolex from the Cambrian Stage 3 Xiaoshiba Lagerstätte in Kunming, China, provide the first detailed account of a proboscis in Palaeoscoelcida sensu stricto, a core group of palaeoscolecids characterized by having a tessellating scleritome of phosphatic plates and platelets. The eversible mouthparts of Mafangscolex comprise an armoured, hexaradially symmetrical introvert, a ring of coronal spines and quincuncially arranged pharyngeal armature, with a range of tooth morphologies. Taken together, this configuration strikingly resembles the proboscis arrangement inferred for the ancestral ecdysozoan. The six-fold symmetry represents an important difference from the pentaradial priapulan proboscis. The retention of key aspects of the ancestral ecdysozoan body plan suggests that palaeoscolecids represent a useful window on the earliest stages of ecdysozoan evolution.