We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we investigate strongly regular congruences on $E$-inversive semigroups $S$. We describe the complete lattice homomorphism of strongly regular congruences, which is a generalization of an open problem of Pastijn and Petrich for regular semigroups. An abstract characterization of left and right traces for strongly regular congruences is given. The strongly regular (sr) congruences on $E$-inversive semigroups $S$ are described by means of certain strongly regular congruence triples $({\it\gamma},K,{\it\delta})$ consisting of certain sr-normal equivalences ${\it\gamma}$ and ${\it\delta}$ on $E(S)$ and a certain sr-normal subset $K$ of $S$. Further, we prove that each strongly regular congruence on $E$-inversive semigroups $S$ is uniquely determined by its associated strongly regular congruence triple.
In this paper, another relationship between the quasi-ideal adequate transversals of an abundant semigroup is given. We introduce the concept of a weakly multiplicative adequate transversal and the classic result that an adequate transversal is multiplicative if and only if it is weakly multiplicative and a quasi-ideal is obtained. Also, we give two equivalent conditions for an adequate transversal to be weakly multiplicative. We then consider the case when $I$ and $\Lambda $ (defined below) are bands. This is analogous to the inverse transversal if the regularity condition is adjoined.
In any regular semigroup with an orthodox transversal, we define two sets R and L using Green’s relations and give necessary and sufficient conditions for them to be subsemigroups. By using R and L, some equivalent conditions for an orthodox transversal to be a quasi-ideal are obtained. Finally, we give a structure theorem for regular semigroups with quasi-ideal orthodox transversals by two orthodox semigroups R and L.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.