We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The codling moth Cydia pomonella is a major pest of global significance impacting pome fruits and walnuts. It threatens the apple industry in the Loess Plateau and Bohai Bay in China. Sterile insect technique (SIT) could overcome the limitations set by environmentally compatible area-wide integrated pest management (AW-IPM) approaches such as mating disruption and attract-kill that are difficult to suppress in a high-density pest population, as well as the development of insecticide resistance. In this study, we investigated the effects of X-ray irradiation (183, 366, 549 Gy) on the fecundity and fertility of a laboratory strain of C. pomonella, using a newly developed irradiator, to evaluate the possibility of X-rays as a replacement for Cobalt60 (60Co-γ) and the expanded future role of this approach in codling moth control. Results show that the 8th-day is the optimal age for irradiation of male pupae. The fecundity decreased significantly as the dosage of radiation increased. The mating ratio and mating number were not influenced. However, treated females were sub-sterile at a radiation dose of 183 Gy (20.93%), and were almost 100% sterile at a radiation dose of 366 Gy or higher. Although exposure to a radiation dose of 366 Gy resulted in a significant reduction in the mating competitiveness of male moths, our radiation biology results suggest that this new generation of X-ray irradiator has potential applications in SIT programs for future codling moth control.
The study was to evaluate the reproducibility and validity of the FFQ for residents of northeast China. A total of 131 participants completed two FFQ (FFQ1 and FFQ2) within a 3-month period, 125 participants completed 8-d weighed diet records (WDR) and 112 participants completed blood biomarker testing. Reproducibility was measured by comparing nutrient and food intake between FFQ1 and FFQ2. The validity of the FFQ was assessed by WDR and the triad method. The Spearman correlation coefficients (SCC) and intraclass correlation coefficients (ICC) for reproducibility ranged from 0·41 to 0·69 (median = 0·53) and from 0·18 to 0·68 (median = 0·53) for energy and nutrients and from 0·37 to 0·73 (median = 0·59) and from 0·33 to 0·86 (median = 0·60) for food groups, respectively. The classifications of same or adjacent quartiles ranged from 73·64 to 93·80 % for both FFQ. The crude SCC between the FFQ and WDR ranged from 0·27 to 0·55 (median = 0·46) for the energy and nutrients and from 0·26 to 0·70 (median = 0·52) for food groups, and classifications of the same or adjacent quartiles ranged from 65·32 to 86·29 %. The triad method indicated that validation coefficients for the FFQ were above 0·3 for most nutrients, which indicated a moderate or high level of validity. The FFQ that was developed for residents of northeast China for the Northeast Cohort Study of China is reliable and valid for assessing the intake of most foods and nutrients.
Due to the presence of geological fluid under actual geological conditions, water–rock interaction will occur between the fluid and reservoir. Thus, to analyse the influence of the water–rock interaction on storage space during the organic matter evolution stages, this study conducted a series of simulation experiments on shales by using a closed autoclave: four temperatures, 250°C, 300°C, 350°C, 400°C, and five fluid–rock ratios (FRRs), 0:20, 4:20, 10:20, 15:20, and 20:20. Low pressure N2 adsorption measurement was conducted on the solid residues. The experimental results show that the effect of temperature on the yield and pore structure of oil shale was the same as the result when the FRR was = 0:20, 4:20 and = 10:20, 15:20, 20:20, respectively. This result showed that temperature remained the main factor that affected the thermal evolution of hydrocarbon generation. Additionally, temperature was beneficial to the generation and storage of shale oil within a certain range, but only occupied the storage space of shale oils or connected a certain storage space beyond a certain range. The variation trend of shale oil yield with increasing FRR under the same simulated temperatures, 250°C and 400°C, was most affected by the FRR, but little change occurred at 300°C and 350°C. This further proved that the ratio of fluid to rock was an indirect acting factor, which affected the evolution of organic matters and then the development of pore structures. Before the oil window (350°C), the lower evolution degree, the higher water content and the more significant effect. In the higher evolution stage, the higher the water content, and the more complete the kerogen reaction, which was also more conducive to the development of pore structures. Therefore, this study promotes the establishment of linear equations on FRR to the gas adsorption capacity, which further provides a theoretical basis and guidance for the exploration and development of shale oil.
The incidence of scarlet fever has increased dramatically in recent years in Chongqing, China, but there has no effective method to forecast it. This study aimed to develop a forecasting model of the incidence of scarlet fever using a seasonal autoregressive integrated moving average (SARIMA) model. Monthly scarlet fever data between 2011 and 2019 in Chongqing, China were retrieved from the Notifiable Infectious Disease Surveillance System. From 2011 to 2019, a total of 5073 scarlet fever cases were reported in Chongqing, the male-to-female ratio was 1.44:1, children aged 3–9 years old accounted for 81.86% of the cases, while 42.70 and 42.58% of the reported cases were students and kindergarten children, respectively. The data from 2011 to 2018 were used to fit a SARIMA model and data in 2019 were used to validate the model. The normalised Bayesian information criterion (BIC), the coefficient of determination (R2) and the root mean squared error (RMSE) were used to evaluate the goodness-of-fit of the fitted model. The optimal SARIMA model was identified as (3, 1, 3) (3, 1, 0)12. The RMSE and mean absolute per cent error (MAPE) were used to assess the accuracy of the model. The RMSE and MAPE of the predicted values were 19.40 and 0.25 respectively, indicating that the predicted values matched the observed values reasonably well. Taken together, the SARIMA model could be employed to forecast scarlet fever incidence trend, providing support for scarlet fever control and prevention.
Thyroid cancer (TC) incidence has increased greatly during the past decades with a few established risk factors, while no study is available that has assessed the association of the Chinese Health Dietary Index (CHDI) with TC. We conducted a 1:1 matched case–control study in two hospitals in Shanghai, China. Diet-quality scores were calculated according to CHDI using a validated and reliable FFQ. Conditional logistic regression analysis and restricted cubic spline analysis were used to reveal potential associations between CHDI score and TC risk. A total of 414 pairs of historically confirmed TC patients and healthy controls were recruited from November 2012 to December 2015. The total score of cases and controls were 67·5 and 72·8, respectively (P < 0·001). The median score of total vegetables, fruit, diary products, dark green and orange vegetables, fish, shellfish and mollusk, soyabean, whole grains, dry bean and tuber in cases was significantly lower than those in controls. Compared with the reference group (≤60 points), the average (60–80 points) and high (≥80 points) levels of the CHDI score were associated with a reduced risk of TC (OR: 0·40, 95 % CI 0·26, 0·63 for 60–80 points; OR: 0·22, 95 % CI 0·12, 0·38 for ≥80 points). In age-stratified analyses, the favourable association remained significant among participants who are younger than 50 years old. Our data suggested that high diet quality as determined by CHDI was associated with lower risk of TC.
Developmental signals and environmental stresses regulate carbon distribution in the vegetative and reproductive organs of plants and affect seed yield. Cleistogenes songorica is a xerophytic grass with great potential application value in ecological restoration. However, how carbohydrate transport and distribution during grain filling affect the seed yield of C. songorica under water stress is not clear. The present study showed that the soluble sugar and starch contents of cleistogamous (CL) spikes and chasmogamous (CH) spikes were significantly higher at the milk stage, which was attributed to a significantly higher seed number and seed yield per spike under water stress conditions than under well-watered conditions (P < 0.01). RNA-seq data revealed a total of 54,525 differentially expressed genes (DEGs) under water stress conditions, but only 3744 DEGs were shared among all comparison groups. Weighted gene co-expression network analysis showed that the transport and distribution of carbohydrates were regulated by ABA-responsive genes (CsABA8OX1_1, CsABA8OX1_2, CsABA8OX2_1, CsABA8OX2_2, CsNCED3, CsNCED1_1, CsNCED1_2 and CsNCED4_1) and sugar transport and starch synthesis genes (CsSUS1, CsSUS2, CsSUS3, CsAGP1, CsAGP4, CsAGP5, CsSSS1 and CsSBE5) under water stress conditions. These genes jointly regulated carbohydrate remobilization in sources (stems, leaves and sheaths) to promote grain filling and improve seed yield. The present study helped to clarify the phenotypic, metabolic and transcriptional response mechanisms of vegetative organs, such as stems and leaves, and reproductive organs, such as CL spikes and CH spikes, to promote carbohydrate redistribution under water stress, and it provides theoretical guidance for improving seed yields.
Gut microbiome and dietary patterns have been suggested to be associated with depression/anxiety. However, limited effort has been made to explore the effects of possible interactions between diet and microbiome on the risks of depression and anxiety.
Methods
Using the latest genome-wide association studies findings in gut microbiome and dietary habits, polygenic risk scores (PRSs) analysis of gut microbiome and dietary habits was conducted in the UK Biobank cohort. Logistic/linear regression models were applied for evaluating the associations for gut microbiome-PRS, dietary habits-PRS, and their interactions with depression/anxiety status and Patient Health Questionnaire (PHQ-9)/Generalized Anxiety Disorder-7 (GAD-7) score by R software.
Results
We observed 51 common diet–gut microbiome interactions shared by both PHQ score and depression status, such as overall beef intake × genus Sporobacter [hurdle binary (HB)] (PPHQ = 7.88 × 10−4, Pdepression status = 5.86 × 10−4); carbohydrate × genus Lactococcus (HB) (PPHQ = 0.0295, Pdepression status = 0.0150). We detected 41 common diet–gut microbiome interactions shared by GAD score and anxiety status, such as sugar × genus Parasutterella (rank normal transformed) (PGAD = 5.15 × 10−3, Panxiety status = 0.0347); tablespoons of raw vegetables per day × family Coriobacteriaceae (HB) (PGAD = 6.02 × 10−4, Panxiety status = 0.0345). Some common significant interactions shared by depression and anxiety were identified, such as overall beef intake × genus Sporobacter (HB).
Conclusions
Our study results expanded our understanding of how to comprehensively consider the relationships for dietary habits–gut microbiome interactions with depression and anxiety.
The optimization of laser pulse shapes is of great importance and a major challenge for laser direct-drive implosions. In this paper, we propose an efficient intelligent method to perform laser pulse optimization via hydrodynamic simulations guided by the genetic algorithm and random forest algorithm. Compared to manual optimizations, the machine-learning guided method is able to efficiently improve the areal density by a factor of 63% and reduce the in-flight-aspect ratio by a factor of 30% at the same time. A relationship between the maximum areal density and ion temperature is also achieved by the analysis of the big simulation dataset. This design method has been successfully demonstrated by the 2021 summer double-cone ignition experiments conducted at the SG-II upgrade laser facility and has great prospects for the design of other inertial fusion experiments.
The Middle Miocene Climatic Optimum is known for abrupt events during the global cooling trend of the past 20 Ma. Its identification in the Tibetan Plateau can help explain the cause of the critical Middle Miocene climate transition in Central Asia. In this study, fine-grained mixed sediments widely distributed in the Miocene Qaidam Lake in the northern Tibetan Plateau were used as a sensitive indicator for palaeoclimate. Their geochemical characteristics were investigated, together with an analysis of 2600 m long successive gamma-ray logging data from the whole JS2 drillcore, to understand the mid-Miocene climate transition in the Tibetan Plateau. By comparing the gamma-ray curve of the mixed sediments with global temperature, the Middle Miocene Climatic Optimum event can be easily identified. Further, the detailed petrological features and geochemical data of lacustrine fine-grained mixed sediments from a 400 m drillcore show oxidizing, high-sedimentation rate and brackish-saline water conditions in a semi-arid climate during the Middle Miocene period, demonstrating a dryer climate in the Qaidam Basin than in the monsoon-sensitive regions in Central Asia. These fine-grained mixed sediments have recorded climate drying before 15.3 Ma that represents a climatic transition within the Middle Miocene Climatic Optimum; increasing carbonate-rich mixed sediments, decreasing algal limestone layers and decreasing lacustrine organic matter are indicators of this transition. Regional tectonic events include the retreat of the Paratethys from Central Asia at ∼15 Ma and the synchronous tectonic reorganization of the Altyn-Tagh fault system and the northeastern Tibetan Plateau. We find that global climate change is the primary factor affecting the overall characteristics and changes of the Neogene climate in the Qaidam Basin, including the occurrence of the Middle Miocene Climatic Optimum and the cooling and drying tendency, while the regional events are a secondary factor.
High dietary fibre intake has been associated with a lower risk of diabetes, but the association of dietary fibre with prediabetes is only speculative, especially in China, where the supportive data from prospective studies are lacking. This study aimed to examine the association between dietary fibre intake and risk of incident prediabetes among Chinese adults. We performed a prospective analysis in 18 085 participants of the Tianjin Chronic Low-grade Systemic Inflammation and Health cohort study who were free of diabetes, prediabetes, cancer and CVD at baseline. Dietary data were collected using a validated 100-item FFQ. Prediabetes was defined based on the American Diabetes Association diagnostic criteria. Cox proportional hazard models were used to estimate hazard ratios (HR) and 95 % CI. During 63 175 person-years of follow-up, 4139 cases of incident prediabetes occurred. The multivariable HR of prediabetes for the highest v. lowest quartiles were 0·85 (95 % CI 0·75, 0·98) (P for trend = 0·02) for total dietary fibre, 0·84 (95 % CI 0·74, 0·95) (P for trend < 0·01) for soluble fibre and 1·05 (95 % CI 0·93, 1·19) (P for trend = 0·38) for insoluble fibre. Fibre from fruits but not from cereals, beans and vegetables was inversely associated with prediabetes. Our results indicate that intakes of total dietary fibre, soluble fibre and fibre derived from fruit sources were associated with a lower risk of prediabetes.
Tremendous progress has been made in the field of ferroptosis since this regulated cell death process was first named in 2012. Ferroptosis is initiated upon redox imbalance and driven by excessive phospholipid peroxidation. Levels of multiple intracellular nutrients (iron, selenium, vitamin E and coenzyme Q10) are intimately related to the cellular antioxidant system and participate in the regulation of ferroptosis. Dietary intake of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) regulates ferroptosis by directly modifying the fatty acid composition in cell membranes. In addition, amino acids and glucose (energy stress) manipulate the ferroptosis pathway through the nutrient-sensitive kinases mechanistic target of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK). Understanding the molecular interaction between nutrient signals and ferroptosis sensors might help in the identification of the roles of ferroptosis in normal physiology and in the development of novel pharmacological targets for the treatment of ferroptosis-related diseases.
This study aimed to investigate the environmental contamination of nucleic acid at 2019 novel coronavirus (2019-nCOV) vaccination site and to evaluate the effect of improvement to the vaccination process. Nucleic acid samples were collected from the surface of the objects in 2019-nCOV vaccination point A (used between 15 November 2020 and 25 December 2020) and point B (used after 27 December 2020) in a comprehensive tertiary hospital. Samples were collected from point A before improvement to the vaccination process, and from point B (B1 and B2) after improvement to the vaccination process. The real-time fluorescence polymerase chain reaction method was used for detection. The positive rate of vaccination room was 47.06% (24/51) at point A. No positive result was found in point B1 both at working hours (0/27) and after terminal disinfection (0/27). In point B2, the positive results were found in vaccine's outer packaging and staff gloves at working hours, with a positive rate of 7.41% (2/27). The positive rate was 0 (0/27) after terminal disinfection in point B2. The nucleic acid contamination in the vaccination room of 2019-nCOV vaccine nucleic acid sampling point is serious, which can be avoided through the improvement and intervention (such as personal protection, vaccination operation and disinfection methods).
The thermal conductivity of a molecular gas consists of the translational and internal parts. Although in continuum flows the total thermal conductivity itself is adequate to describe the heat transfer, in rarefied gas flows they need to be modelled separately, according to the relaxation rates of translational and internal heat fluxes in an homogeneous system. This paper is dedicated to quantifying how these relaxation rates affect rarefied gas dynamics. The kinetic model of Wu et al. (J. Fluid Mech., vol. 763, 2015, pp. 24–50) is adapted to recover the relaxation of heat fluxes, which is validated by the direct simulation Monte Carlo method. Then the model of Wu et al., which has the freedom to adjust the relaxation rates, is used to investigate the rate effects of thermal relaxation in problems such as the normal shock wave, creep flow driven by Maxwell's demon and thermal transpiration. It is found that the relaxation rates of heat flux affect rarefied gas flows significantly, even when the total thermal conductivity is fixed.
A multicenter study of sharps injuries (SIs) and other blood or body fluid (OBBF) exposures was conducted among 33,156 healthcare workers (HCWs) from 175 hospitals in Anhui, China. In total, 12,178 HCWs (36.7%) had experienced at least 1 SI in the previous 12 months and 8,116 HCWs (24.5%) had experienced at least 1 OBBF exposure during the previous 12 months.
Understanding the patterns of treatment response is critical for the treatment of patients with schizophrenia; one way to achieve this is through using a longitudinal dynamic process study design.
Aims
This study aims to explore the response trajectory of antipsychotics and compare the treatment responses of seven different antipsychotics over 6 weeks in patients with schizoprenia (trial registration: Chinese Clinical Trials Registry Identifier: ChiCTR-TRC-10000934).
Method
Data were collected from a multicentre, randomised open-label clinical trial. Patients were evaluated with the Positive and Negative Syndrome Scale (PANSS) at baseline and follow-up at weeks 2, 4 and 6. Trajectory groups were classified by the method of k-means cluster modelling for longitudinal data. Trajectory analyses were also employed for the seven antipsychotic groups.
Results
The early treatment response trajectories were classified into a high-trajectory group of better responders and a low-trajectory group of worse responders. The results of trajectory analysis showed differences compared with the classification method characterised by a 50% reduction in PANSS scores at week 6. A total of 349 patients were inconsistently grouped by the two methods, with a significant difference in the composition ratio of treatment response groups using these two methods (χ2 = 43.37, P < 0.001). There was no differential contribution of high- and low trajectories to different drugs (χ2 = 12.52, P = 0.051); olanzapine and risperidone, which had a larger proportion in the >50% reduction at week 6, performed better than aripiprazole, quetiapine, ziprasidone and perphenazine.
Conclusions
The trajectory analysis of treatment response to schizophrenia revealed two distinct trajectories. Comparing the treatment responses to different antipsychotics through longitudinal analysis may offer a new perspective for evaluating antipsychotics.
Although the thermal conductivity of molecular gases can be measured straightforwardly and accurately, it is difficult to experimentally determine its separate contributions from the translational and internal motions of gas molecules. Yet, this information is critical in rarefied gas dynamics as the rarefaction effects corresponding to these motions are different. In this paper, we propose a novel methodology to extract the translational thermal conductivity (or equivalently, the translational Eucken factor) of molecular gases from the Rayleigh–Brillouin scattering (RBS) experimental data. From the numerical simulation of the Wu et al. (J. Fluid Mech., vol. 763, 2015, pp. 24–50) model we find that, in the kinetic regime, in addition to bulk viscosity, the RBS spectrum is sensitive to the translational Eucken factor, even when the total thermal conductivity is fixed. Thus it is not only possible to extract the bulk viscosity, but also the translational Eucken factor of molecular gases from RBS light scattering spectra measurements. Such experiments bear the additional advantage that gas–surface interactions do not affect the measurements. By using the Wu et al. model, bulk viscosities (due to the rotational relaxation of gas molecules only) and translational Eucken factors of $\textrm {N}_2$, $\textrm {CO}_2$ and $\textrm {SF}_6$ are simultaneously extracted from RBS experiments.
Birth weight influences not only brain development, but also mental health outcomes, including depression, but the underlying mechanism is unclear.
Methods.
The phenotypic data of 12,872–91,009 participants (59.18–63.38% women) from UK Biobank were included to test the associations between the birth weight, depression, and brain volumes through the linear and logistic regression models. As birth weight is highly heritable, the polygenic risk scores (PRSs) of birth weight were calculated from the UK Biobank cohort (154,539 participants, 56.90% women) to estimate the effect of birth weight-related genetic variation on the development of depression and brain volumes. Finally, the mediation analyses of step approach and mediation analysis were used to estimate the role of brain volumes in the association between birth weight and depression. All analyses were conducted sex stratified to assess sex-specific role in the associations.
Result.
We observed associations between birth weight and depression (odds ratio [OR] = 0.968, 95% confidence interval [CI] = 0.957–0.979, p = 2.29 × 10−6). Positive associations were observed between birth weight and brain volumes, such as gray matter (B = 0.131, p = 3.51 × 10−74) and white matter (B = 0.129, p = 1.67 × 10−74). Depression was also associated with brain volume, such as left thalamus (OR = 0.891, 95% CI = 0.850–0.933, p = 4.46 × 10−5) and right thalamus (OR = 0.884, 95% CI = 0.841–0.928, p = 2.67 × 10−5). Additionally, significant mediation effects of brain volume were found for the associations between birth weight and depression through steps approach and mediation analysis, such as gray matter (B = –0.220, p = 0.020) and right thalamus (B = –0.207, p = 0.014).
Conclusions.
Our results showed the associations among birth weight, depression, and brain volumes, and the mediation effect of brain volumes also provide evidence for the sex-specific of associations.
As city residents eat out more frequently, it is unknown that if iodised salt is still required in home cooking. We analysed the relationship of household salt and eating out on urinary iodine concentration (UIC) in pregnant women. A household condiment weighing method was implemented to collect salt data for a week. A household salt sample was collected. A urine sample was taken at the end of the week. Totally, 4640 participants were investigated. The median UIC was 139·1 μg/l in pregnant women and 148·7, 140·0 and 122·9 μg/l in the first, second and third trimesters. Median UIC in the third trimester was lower than in the other trimesters (P < 0·001). The usage rates of iodised (an iodine content ≥ 5·0 mg/kg) and qualified-iodised (an iodine content ≥ 21·0 mg/kg) salt were 73·9 and 59·3 %. The median UIC in the qualified-iodised salt group was higher than in the non-iodised group (P = 0·037). The median UIC in the non-iodised group who did not eat out was lower than in qualified-salt groups who both did and did not eat out (P = 0·007, <0·001). The proportion of qualified-iodised salt used in home cooking is low, but foods eaten out have universal salt iodisation according to the national compulsory policy. Household iodised salt did not play a decisive role in the iodine status of pregnant women. Pregnant women in their third trimester who are not eating out and using non-iodised salt at home require extra iodine.