We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Coronavirus disease 2019 (COVID-19) asymptomatic cases are hard to identify, impeding transmissibility estimation. The value of COVID-19 transmissibility is worth further elucidation for key assumptions in further modelling studies. Through a population-based surveillance network, we collected data on 1342 confirmed cases with a 90-days follow-up for all asymptomatic cases. An age-stratified compartmental model containing contact information was built to estimate the transmissibility of symptomatic and asymptomatic COVID-19 cases. The difference in transmissibility of a symptomatic and asymptomatic case depended on age and was most distinct for the middle-age groups. The asymptomatic cases had a 66.7% lower transmissibility rate than symptomatic cases, and 74.1% (95% CI 65.9–80.7) of all asymptomatic cases were missed in detection. The average proportion of asymptomatic cases was 28.2% (95% CI 23.0–34.6). Simulation demonstrated that the burden of asymptomatic transmission increased as the epidemic continued and could potentially dominate total transmission. The transmissibility of asymptomatic COVID-19 cases is high and asymptomatic COVID-19 cases play a significant role in outbreaks.
Ammannia multiflora Roxb. is a dominant broadleaf weed that is a serious problem in southern China rice fields, and acetolactate synthase (ALS)-inhibiting herbicides have been used for its control for more than 20 years. Excessive reliance on ALS-inhibiting herbicides has led to herbicide resistance in A. multiflora. In this study, 10 A. multiflora populations from the Jiangsu Province of China were collected, and the resistance levels and target site–resistance mechanisms to ALS-inhibiting herbicides bensulfuron-methyl and penoxsulam were investigated. The dose–response assays showed that eight populations evolved resistance to bensulfuron-methyl (9.1- to 90.9-fold) and penoxsulam (5.0- to 103.1-fold). Amplification of ALS genes indicated that there were three ALS genes (AmALS1, AmALS2, and AmALS3) in A. multiflora. Sequence analysis revealed amino acid mutations at Pro-197 in either AmALS1 (Pro-197-Ala, Pro-197-Ser, and Pro-197-His) or AmALS2 (Pro-197-Ser and Pro-197-Arg) in resistant populations, and no mutations were found in AmALS3. Moreover, two independent mutations (Pro-197-Ala in AmALS1 and Pro-197-Ser in AmALS2 or Pro-197-Ala in AmALS1 and Pro-197-Arg in AmALS2) coexisted in two resistant populations, respectively. In addition, the auxin mimic herbicides MCPA and florpyrauxifen-benzyl, the photosystem II inhibitor bentazon, and the protoporphyrinogen oxidase inhibitor carfentrazone-ethyl can effectively control the resistant A. multiflora populations. Our study demonstrates the wide prevalence of ALS inhibitor–resistant A. multiflora populations in Jiangsu Province and the diversity of Pro-197 mutations in ALS genes and provides alternative herbicide options for controlling resistant A. multiflora populations.
Cognitive impairment is common in late-life depression, which may increase Alzheimer disease (AD) risk. Therefore, we aimed to investigate whether late-life major depressive disorder (MDD) has worse cognition and increases the characteristic AD neuropathology. Furthermore, we carried out a comparison between treatment-resistant depression (TRD) and non-TRD. We hypothesized that patients with late-life depression and TRD may have increased β-amyloid (Aβ) deposits in brain regions responsible for global cognition.
Methods
We recruited 81 subjects, including 54 MDD patients (27 TRD and 27 non-TRD) and 27 matched healthy controls (HCs). Neurocognitive tasks were examined, including Mini-Mental State Examination and Montreal Cognitive Assessment to detect global cognitive functions. PET with Pittsburgh compound-B and fluorodeoxyglucose were used to capture brain Aβ pathology and glucose use, respectively, in some patients.
Results
MDD patients performed worse in Montreal Cognitive Assessment (p = 0.003) and had more Aβ deposits than HCs across the brain (family-wise error-corrected p < 0.001), with the most significant finding in the left middle frontal gyrus. Significant negative correlations between global cognition and prefrontal Aβ deposits existed in MDD patients, whereas positive correlations were noted in HCs. TRD patients had significantly more deposits in the left-sided brain regions (corrected p < 0.001). The findings were not explained by APOE genotypes. No between-group fluorodeoxyglucose difference was detected.
Conclusions
Late-life depression, particularly TRD, had increased brain Aβ deposits and showed vulnerability to Aβ deposits. A detrimental role of Aβ deposits in global cognition in patients with late-onset or non-late-onset MDD supported the theory that late-life MDD could be a risk factor for AD.
Dietary modification plays a vital role in the treatment of non-alcoholic liver diseases. We investigated the effects of the consumption of a different amount of dehulled adlay, which has hypolipidaemic and anti-inflammatory properties, on non-alcoholic fatty liver disease (NAFLD). We fed rats a high-fat-high-fructose liquid diet for 16 weeks to induce NAFLD. The rats were divided into three groups fed the NAFLD diet only (NN) or a diet containing 44·9 or 89·8 g/l of dehulled adlay (NA and NB groups, respectively). After 8 weeks, the NA and NB groups had lower C-reactive protein levels and improvement in insulin resistance. In addition, the NB group had lower liver weight and hepatic TAG and cholesterol concentrations than did the NN group. Compared with the NN group, the high-dose NB group had improved steatosis, lower hepatic TNF-α, IL-1β and IL-6 levels and lower adipose leptin levels. Our results suggest that a diet containing dehulled adlay can ameliorate NAFLD progression by decreasing of insulin resistance, steatosis and inflammation.
Nutritional Risk Screening index is a standard tool to assess nutritional risk, but epidemiological data are scarce on controlling nutritional status (CONUT) as a prognostic marker in acute haemorrhagic stroke (AHS). We aimed to explore whether the CONUT may predict a 3-month functional outcome in AHS. In total, 349 Chinese patients with incident AHS were consecutively recruited, and their malnutrition risks were determined using a high CONUT score of ≥ 2. The cohort patients were divided into high-CONUT (≥ 2) and low-CONUT (< 2) groups, and primary outcomes were a poor functional prognosis defined as the modified Rankin Scale (mRS) score of ≥ 3 at post-discharge for 3 months. Odds ratios (OR) with 95 % confidence intervals (CI) for the poor functional prognosis at post-discharge were estimated by using a logistic analysis with additional adjustments for unbalanced variables between the high-CONUT and low-CONUT groups. A total of 328 patients (60·38 ± 12·83 years; 66·77 % male) completed the mRS assessment at post-discharge for 3 months, with 172 patients at malnutrition risk at admission and 104 patients with a poor prognosis. The levels of total cholesterol and total lymphocyte counts were significantly lower in high-CONUT patients than low-CONUT patients (P = 0·012 and < 0·001, respectively). At 3-month post discharge, there was a greater risk for the poor outcome in the high-CONUT compared with the low-CONUT patients at admission (OR: 2·32, 95 % CI: 1·28, 4·17). High-CONUT scores independently predict a 3-month poor prognosis in AHS, which helps to identify those who need additional nutritional managements.
ITGB1 (Integrin β1, CD29) is a member of the integrin family and has a role as a major adhesion receptor. Gastric cancer (GC) is an important cause of mortality worldwide, especially in China. As a potential cancer enhancer, the role ITGB1 plays in GC progression remains unclear. In the current study, our assay on the databases of tumoassociated gene expression and interaction found that the high expression of ITGB1 was closely correlated with the poor prognosis of GC patients. To explore the roles, ITGB1 plays in GC progression, and an ITGB1-deleted cell line (ITGB1−/−SGC7901) was generated using the CRISPR/Cas9 method. The tumor malignancy-associated cell behaviors and microstructures were detected, imaged, and analyzed using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), wound healing, transwell, scanning electron microscopy, laser scanning confocal microscopy, and others. The results indicated that ITGB1 deletion decreased the GC cell proliferation and motility, and inhibited motility-relevant microstructures, such as pseudopodia and filopodia, markedly in ITGB1-deleted SGC7901 cells. The analysis of STRING database and western blots indicated that ITGB1 contributes to the malignancy of GC mediated by Src-mediated FAK/PI3K/Akt signaling pathways. Taken together, the results showed that ITGB1 may be a potential targeting marker for GC diagnosis and therapy in the future.
Ludwigia prostrata is a problematic weed in rice fields in China, where acetolactate synthase (ALS)-inhibiting herbicides (e.g., bensulfuron-methyl) are widely used for the management of broadleaf weeds. Recently, an L. prostrata biotype (JS-R) that failed to be controlled with ALS-inhibiting herbicides was found in Jiangsu Province, China. This study aims to determine the level and molecular mechanism of resistance to bensulfuron-methyl in this JS-R biotype and to evaluate its spectrum of cross-resistance to other ALS-inhibiting herbicides. The dose–response assays indicated that the JS-R L. prostrata biotype had evolved 21.2-fold resistance to bensulfuron-methyl compared with the susceptible biotype (JS-S). ALS gene sequencing revealed that a nucleotide mutation (CCA to TCA) at codon 197, resulting in a Pro-197-Ser mutation, was detected in the resistant plants. Moreover, while the JS-R biotype contained the Pro-197-Ser resistance mutation and showed cross-resistance to pyrazosulfuron-ethyl (12.0-fold), it was sensitive to penoxsulam, bispyribac-sodium, and imazethapyr, which may serve as alternative herbicides to control the resistant L. prostrata biotype. This is the first confirmation of an L. prostrata biotype resistant to bensulfuron-methyl due to a Pro-197-Ser resistance mutation in the ALS gene.
Renal fibrosis is common especially in the elderly population. Recently, we found that vitamin D deficiency caused prostatic hyperplasia. This study aimed to investigate whether vitamin D deficiency promotes renal fibrosis and functional impairment. All mice except controls were fed with vitamin D-deficient (VDD) diets, beginning from their early life. The absolute and relative kidney weights on postnatal week 20 were decreased in VDD diet-fed male pups but not in female pups. A mild pathological damage was observed in VDD diet-fed male pups but not in females. Further analysis showed that VDD-induced pathological damage was aggravated, accompanied by renal dysfunction in 40-week-old male pups. An obvious collagen deposition was observed in VDD diet-fed 40-week-old male pups. Moreover, renal α-smooth muscle actin (α-SMA), a marker of epithelial–mesenchymal transition (EMT), and Tgf-β mRNA were up-regulated. The in vitro experiment showed that 1,25-dihydroxyvitamin D3 alleviated transforming growth factor-β1 (TGF-β1)-mediated down-regulation of E-cadherin and inhibited TGF-β1-evoked up-regulation of N-cadherin, vimentin and α-SMA in renal epithelial HK-2 cells. Moreover, 1,25-dihydroxyvitamin D3 suppressed TGF-β1-evoked Smad2/3 phosphorylation in HK-2 cells. These results provide experimental evidence that long-term vitamin D deficiency promotes renal fibrosis and functional impairment, at least partially, through aggravating TGF-β/Smad2/3-mediated EMT in middle-aged male mice.
The Antarctic subglacial drilling rig (ASDR) is designed to recover 105 mm-diameter ice cores up to 1400 m depth and 41.5 mm-diameter bedrock cores up to 2 m in length. In order to ensure safe and convenient drilling, drilling auxiliaries are designed to support fieldwork and servicing. These auxiliaries are subdivided into several systems for power supply, drill tripping in the borehole, ice core and chip processing, and drill servicing and maintenance. The required equipment also includes two generators, a drilling winch with a cable, logging winch with a cable, control desk, pipe handler with a fixed clamp, chip chamber vibrator, centrifuge, emergency devices and fitting and electrical tools. Additionally, several environmental protective measures such as a new liquid-tight casing with a thermal casing shoe and a bailing device for recovering drilling fluid from the borehole were designed. Most of the auxiliaries were tested during the summer of 2018–2019 near Zhongshan Station, East Antarctica while drilling to the bedrock to a depth of 198 m.
A new, modified version of the cable-suspended Ice and Bedrock Electromechanical Drill (IBED) was designed for drilling in firn, ice, debris-rich ice and rock. The upper part of the drill is almost the same for all drill variants and comprises four sections: cable termination, a slip-ring section, an antitorque system and an electronic pressure chamber. The lower part of the IBED comprises an auger core barrel, reamers, a core barrel for ice/debris-ice drilling and a conventional geological single-tube core barrel or custom-made double-tube core barrel. First, the short and full-scale field versions of the IBED were tested at an outdoor testing stand and a testing facility with a 12.5 m-deep ice well. Then, in the 2018–2019 summer season, the IBED was tested in the field at a site ~12 km south of Zhongshan Station, East Antarctica, and a ~6 cm bedrock core was recovered from a 198 m-deep borehole. A total of 18 d was required to penetrate the ice sheet. The retrieved core samples of blue ice, basal ice and bedrock provided valuable information regarding the Earth's paleo-environment.
Consumption of a high-fat diet increases fat accumulation and may further lead to inflammation and hepatic injuries. The aim of the study was to investigate the effects of Camellia oleifera seed extract (CSE) on non-alcoholic fatty liver disease (NAFLD). After a 16-week NAFLD-inducing period, rats were assigned to experimental groups fed an NAFLD diet with or without CSE. At the end of the study, we found that consuming CSE decreased the abdominal fat weight and hepatic fat accumulation and modulated circulating adipokine levels. We also found that CSE groups had lower hepatic cytochrome P450 2E1 and transforming growth factor (TGF)-β protein expressions. In addition, we found that CSE consumption may have affected the gut microbiota and reduced toll-like receptor (TLR)-4, myeloid differentiation primary response gene 88, toll/IL-1 receptor domain-containing adaptor-inducing interferon-β (TRIF) expression and proinflammatory cytokine concentrations in the liver. Our results suggest that CSE may alleviate the progression of NAFLD in rats with diet-induced steatosis through reducing fat accumulation and improving lipid metabolism and hepatic inflammation.
Wire-shaped supercapacitors (WSSCs) hold great promise in portable and wearable electronics. Herein, a novel kind of high-performance coaxial WSSCs has been demonstrated and realized by scrolling porous carbon dodecahedrons/Al foil film electrode on vertical FeOOH nanosheets wrapping carbon fiber tows (FeOOH NSs/CFTs) yarn electrode. Remarkably, ionogel is utilized as solid-state electrolyte and exhibits a high thermal/electrochemical stability, which effectively ensures the great reliability and high operating voltage of coaxial WSSCs. Benefiting from the intriguing configuration, the coaxial WSSCs with superior flexibility act as efficient energy storage devices and exhibit low resistance, high volumetric energy density (3.2 mW h/cm3), and strong durability (82% after 10,000 cycles). Importantly, the coaxial WSSCs can be effectively recharged by harvesting sustainable wind source and repeatedly supply power to the lamp without a decline of electrochemical performance. Considering the facile fabrication technology with an outstanding performance, this work has paved the way for the integration of sustainable energy harvesting and wearable energy storage units.
Annexin A2 (ANXA2) is reported to be associated with cancer development. To investigate the roles ANXA2 plays during the development of cancer, the RNAi method was used to inhibit the ANXA2 expression in caco2 (human colorectal cancer cell line) and SMMC7721 (human hepatocarcinoma cell line) cells. The results showed that when the expression of ANXA2 was efficiently inhibited, the growth and motility of both cell lines were significantly decreased, and the development of the motility relevant microstructures, such as pseudopodia, filopodia, and the polymerization of microfilaments and microtubules were obviously inhibited. The cancer cell apoptosis was enhanced without obvious significance. The possible regulating pathway in the process was also predicted and discussed. Our results suggested that ANXA2 plays important roles in maintaining the malignancy of colorectal and hepatic cancer by enhancing the cell proliferation, motility, and development of the motility associated microstructures of cancer cells based on a possible complicated signal pathway.
Maternal one-carbon metabolism during pregnancy is crucial for fetal development and programming by DNA methylation. However, evidence on one-carbon biomarkers other than folate is lacking. We, therefore, investigated whether maternal plasma methyl donors, that is, choline, betaine and methionine, are associated with birth outcomes. Blood samples were obtained from 115 women during gestation (median 26·3 weeks, 90 % range 22·7–33·0 weeks). Plasma choline, betaine, methionine and dimethylglycine were measured using HPLC-tandem MS. Multivariate linear and logistic regression models were used to estimate the association between plasma biomarkers and birth weight, birth length, the risk of small-for-gestational-age and large-for-gestational-age (LGA). Higher level of maternal betaine was associated with lower birth weight (–130·3 (95 % CI –244·8, –15·9) per 1 sd increment for log-transformed betaine). Higher maternal methionine was associated with lower risk of LGA, and adjusted OR, with 95 % CI for 1 sd increase in methionine concentration was 0·44 (95 % CI 0·21, 0·89). Stratified analyses according to infant sex or maternal plasma homocysteine status showed that reduction in birth weight in relation to maternal betaine was only limited to male infants or to who had higher maternal homocysteine status (≥5·1 µmol/l). Higher maternal betaine status was associated with reduced birth weight. Maternal methionine was inversely associated with LGA risk. These findings are needed to be replicated in future larger studies.
Research suggests an association between metabolic disorders, such as type 2 diabetes mellitus (T2DM), and schizophrenia. However, the risk of metabolic disorders in the unaffected siblings of patients with schizophrenia remains unclear.
Methods
Using the Taiwan National Health Insurance Research Database, 3135 unaffected siblings of schizophrenia probands and 12,540 age-/sex-matched control subjects were included and followed up to the end of 2011. Individuals who developed metabolic disorders during the follow-up period were identified.
Results
The unaffected siblings of schizophrenia probands had a higher prevalence of T2DM (3.4% vs. 2.6%, p = 0.010) than the controls. Logistic regression analyses with the adjustment of demographic data revealed that the unaffected siblings of patients with schizophrenia were more likely to develop T2DM (odds ratio [OR]: 1.39, 95% confidence interval [CI]: 1.10–1.75) later in life compared with the control group. Moreover, only female siblings of schizophrenia probands had an increased risk of hypertension (OR: 1.47, 95% CI: 1.07–2.01) during the follow-up compared with the controls.
Discussion
The unaffected siblings, especially sisters, of schizophrenia probands had a higher prevalence of T2DM and hypertension compared with the controls. Our study revealed a familial link between schizophrenia and T2DM in a large sample. Additional studies are required to investigate the shared pathophysiology of schizophrenia and T2DM.
The evolution of carbides and the coarsening behavior of L12 ordered γ′ phase in Ni–25Cr–20Co alloys aged for varying time from 1000 to 5000 h at 700 and 750 °C were discussed in this paper. The mechanical properties of the alloys after aging were also discussed. Due to the changing of predominated resistance factor, a few of the γ′ precipitates’ shape changed from spherical to cuboidal after aging at 750 °C for 3000 h. The sizes and volume fraction of the γ′ precipitates were measured after aging at both temperatures. The experimentally determined temporal exponent of the γ′ coarsening indicated that the coarsening kinetics is in accordance with both models: the classical matrix diffusion LSW model and the trans-interface diffusion-controlled model. Additionally, the coarsening rate of the γ′ precipitates is dominated by the diffusion coefficients of Nb based on the classical LSW model. Furthermore, the yield strength curves of the alloys aged at 700 °C showed different trends at both test temperatures which is related to the influence of γ′ coarsening on the critical resolved shear stress.
Apathy is a condition characterized by a lack of motivation that manifests in emotional, behavioral, and cognitive domains. Although previous studies have indicated that apathy is associated with frontal lesions, few studies have focused on the different subdomains of apathy, and no in vivo human biochemical data have been obtained to examine the neurochemical changes related to apathy in patients with Alzheimer's disease (AD). Thus, we investigated the frontal neurochemical alterations related to apathy among patients with AD using proton magnetic resonance spectroscopy (1H MRS).
Methods:
Apathy was assessed through the Apathy Evaluation Scale (AES). 1H MRS was performed to measure neurochemical metabolite levels in the anterior cingulate region and right orbitofrontal region. Associations between neurochemical metabolites and the total score and subscores of each domain of the AES were analyzed.
Results:
Altogether, 36 patients completed the study. Patients with lower N-acetylaspartate/creatine ratios (NAA/Cr) in the anterior cingulate region demonstrated higher total apathy scores (β = −0.56, p = 0.003) with adjustments for age, gender, educational level, dementia severity, and depression severity. In a further analysis, a lower NAA/Cr in the anterior cingulate region was associated with all subdomains of apathy, including cognition (β = −0.43, p = 0.028), behavior (β = −0.55, p = 0.002), and emotion (β = −0.50, p = 0.005). No statistically significant associations were discovered in the right orbitofrontal region.
Conclusions:
Our results suggest that apathy, in each of its cognitive, behavioral, or emotional subdomains is associated with brain neurochemical alterations in the anterior cingulate region. Abnormal neuronal integrity over the anterior cingulate cortex may exhibit a central role in causing all aspects of apathy in patients with AD.