We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The role of dietary factors in osteoporotic fractures (OFs) in women is not fully elucidated. We investigated the associations between incidence of OF and dietary calcium, magnesium and soy isoflavone intake in a longitudinal study of 48 584 postmenopausal women. Multivariable Cox regression was applied to derive hazard ratios (HRs) and 95 % confidence intervals (CIs) to evaluate associations between dietary intake, based on the averages of two assessments that took place with a median interval of 2⋅4 years, and fracture risk. The average age of study participants is 61⋅4 years (range 43⋅3–76⋅7 years) at study entry. During a median follow-up of 10⋅1 years, 4⋅3 % participants experienced OF. Compared with daily calcium intake ≤400 mg/d, higher calcium intake (>400 mg/d) was significantly associated with about a 40–50 % reduction of OF risk among women with a calcium/magnesium (Ca/Mg) intake ratio ≥1⋅7. Among women with prior fracture history, high soy isoflavone intake was associated with reduced OF risk; the HR was 0⋅72 (95 % CI 0⋅55, 0⋅93) for the highest (>42⋅0 mg/d) v. lowest (<18⋅7 mg/d) quartile intake. This inverse association was more evident among recently menopausal women (<10 years). No significant association between magnesium intake and OF risk was observed. Our findings provide novel information suggesting that the association of OF risk with dietary calcium intake was modified by Ca/Mg ratio, and soy isoflavone intake was modified by history of fractures and time since menopause. Our findings, if confirmed, can help to guide further dietary intervention strategies for OF prevention.
Hyperhomocysteinaemia (HHcy) is associated with all-cause mortality in some disease states. However, the correlation between HHcy and the risk of mortality in the general population has rarely been researched. We aimed to evaluate the association between HHcy and all-cause and cause-specific mortality among adults in the USA. This study analysed data from the National Health and Nutrition Examination Survey database (1999–2002 survey cycle). A multivariable Cox regression model was built to evaluate the correlation between HHcy and all-cause and cause-specific mortality. Smooth curve fitting was used to analyse their dose-dependent relationship. A total of 8442 adults aged 18–70 years were included in this study. After a median follow-up period of 14·7 years, 1007 (11·9 %) deaths occurred including 197 CVD-related deaths, 255 cancer-related deaths and fifty-eight respiratory disease deaths. The participants with HHcy had a 93 % increased risk of all-cause mortality (hazard ratio (HR) 1·93; 95 % CI (1·48, 2·51)), 160 % increased risk of CVD mortality (HR 2·60; 95 % CI (1·52, 4·45)) and 82 % increased risk of cancer mortality (HR 1·82; 95 % CI (1·03, 3·21)) compared with those without HHcy. For unmeasured confounding, E-value analysis proved to be robust. In conclusion, HHcy was associated with high risk of all-cause and cause-specific (CVD, cancer) mortality among adults aged below 70 years.
Due to the lack of research between the inner layers in the structure of colonic mucous and the metabolism of fatty acid in the constipation model, we aim to determine the changes in the mucous phenotype of the colonic glycocalyx and the microbial community structure following treatment with Rhubarb extract in our research. The constipation and treatment models are generated using adult male C57BL/6N mice. We perform light microscopy and transmission electron microscopy (TEM) to detect a Muc2-rich inner mucus layer attached to mice colon under different conditions. In addition, 16S rDNA sequencing is performed to examine the intestinal flora. According to TEM images, we demonstrate that Rhubarb can promote mucin secretion and find direct evidence of dendritic structure-linked mucus structures with its assembly into a lamellar network in a pore size distribution in the isolated colon section. Moreover, the diversity of intestinal flora has noticeable changes in constipated mice. The present study characterizes a dendritic structure and persistent cross-links have significant changes accompanied by the alteration of intestinal flora in feces in models of constipation and pretreatment with Rhubarb extract.
Data suggest poorer bereavement outcomes for lesbian, gay and bisexual people, but this has not been estimated in population-based research. This study compared bereavement outcomes for partners of same-gender and different-gender decedents.
Methods
In this population-based, cross-sectional survey of people bereaved of a civil partner or spouse 6–10 months previously, we used adjusted logistic and linear regression to investigate outcomes of interest: (1) positive screen on Inventory of Complicated Grief (ICG), (2) positive screen on General Health Questionnaire (GHQ), (3) grief intensity (ICG) and (4) psychiatric symptoms (GHQ-12).
Results
Among 233 same-gender partners and 329 of different-gender partners, 66.1% [95% confidence interval (CI) 60.0–72.2] and 59.2% [95% CI (53.9–64.6)] respectively screened positive for complicated grief on the ICG, whilst 76.0% [95% CI (70.5–81.5)] and 69.3% [95% CI (64.3–74.3)] respectively screened positive on the GHQ-12. Same-gender bereaved partners were not significantly more likely to screen positive for complicated grief than different-gender partners [adjusted odds ratio (aOR) 1.56, 95% CI (0.98–2.47)], p = 0.059, but same-gender bereaved partners were significantly more likely to screen for psychiatric caseness [aOR 1.67 (1.02, 2.71) p = 0.043]. We similarly found no significant association of partner gender with grief intensity [B = 1.86, 95% CI (−0.91to 4.63), p = 0.188], but significantly greater psychological distress for same-gender partners [B = 1.54, 95% CI (−0.69–2.40), p < 0.001].
Conclusions
Same-gender bereaved partners report significantly more psychological distress. In view of their poorer sub-clinical mental health, clinical and bereavement services should refine screening processes to identify those at risk of poor mental health outcomes.
Risk perception among nurses after the COVID-19 pandemic is a crucial factor affecting their attitudes and willingness to work in clinics. Those with poor psychological status could perceive risks sensitively as fears or threats that are discouraging. This article aimed to determine whether psychological outcomes, including post-traumatic stress disorder (PTSD), depression, anxiety, and insomnia, following the COVID-19 pandemic were differentially related to the risk perceptions of nurses working in clinics and increased perceived risk.
Method
The participants were 668 nurse clinicians from five local hospitals. Risk perceptions and psychological outcomes were measured by adapted questionnaires via the Internet. Latent profile analysis (LPA) identified subgroups of individuals who showed similar profiles regarding the perceived risks in nursing. Multinomial regression and probit regression were used to examine the extent to which sociodemographic and psychological outcomes predicted class membership.
Results
LPA revealed four classes: groups with low-, mild-, moderate-, and high-level risk perceptions. Membership of the high-level risk perception class was predicted by the severity of psychological outcomes. Anxiety significantly accounted for a moderate increase in risk perceptions, while the symptoms of insomnia, depression, and PTSD accelerated the increase to the high level of risk perception class.
Conclusions
By classifying groups of nurse clinicians sharing similar profiles regarding risk perceptions and then exploring associated predictors, this study shows the psychological outcomes after COVID-19 significantly impacted pandemic-associated risk perceptions and suggests intervening in nurses' psychological outcomes while simultaneously focusing on work-related worries is important following the outbreak of COVID-19.
The Belt and Road Initiative (BRI) may potentially reduce trade barriers between China and countries along the Belt and Road (BR) route, affecting the positions in Global Value Chains (GVCs) of agricultural products of these countries. This study explores the BRI influence on the GVC positions using a global computable general equilibrium (CGE) model and focusing on China and the BR countries. The study finds that the reduction of tariff barriers and non-tariff barriers between countries along ‘the Belt and Road’ results in increased producer prices and volumes of almost all agricultural products exported from China, which improves the position of China in the GVCs of these agricultural products in our best estimate scenario. Countries along the BR route also benefit from the reduction in trade barriers, with improved positions in the GVCs of agricultural products in the best estimate scenario, especially those products that have comparative advantages in GVCs.
As part of a long-term experiment to determine the impacts of composted manure and straw amendments (replacing 50% of chemical fertilizer with composted pig manure, wheat straw return combined with chemical fertilizer, and setting no fertilizer and chemical fertilizer-only as controls) on rice-associated weeds in a rice (Oryza sativa L.)–wheat (Triticum aestivum L.) rotation system, species richness, abundance, density, and biomass of weeds were assessed during years 8 and 9. Fertilization decreased the species richness and total density of rice-associated weeds but increased their total biomass. The species richness and densities of broadleaf and sedge weeds decreased with fertilization, while species richness of grass weeds increased only with straw return and density was not significantly affected. The shoot biomass per square meter of grass and broadleaf weeds was significantly higher with fertilization treatments than with the no-fertilizer control, while that of sedge weeds declined with fertilizer application. With fertilization, the densities of monarch redstem (Ammannia baccifera L.) and smallflower umbrella sedge (Cyperus difformis L.) decreased, that of Chinese sprangletop [Leptochloa chinensis (L.) Nees] increased, and those of barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] and monochoria [Monochoria vaginalis (Burm. f.) C. Presl ex Kunth] were not significantly affected. Ammannia baccifera was the most abundant weed species in all treatments. Whereas composted pig manure plus fertilizer resulted in higher density of A. baccifera and lower shoot biomass per plant than chemical fertilizer only, wheat straw return plus chemical fertilizer caused lower density and shoot biomass of A. baccifera. Therefore, it may be possible that fertilization strategies that suppress specific weeds could be used as improved weed management program components in rice production systems.
The effects of chordwise deformation and the half-amplitude asymmetry on the hydrodynamic performance and vortex dynamics of batoid fish have been numerically investigated, in which the two parameters were represented by the wavenumber ($W$) and the ratio of the half-amplitude above the longitudinal axis to that below ($HAR$). Fin kinematics were prescribed based on biological data. Simulations were conducted using the immersed boundary method. It was found that moderate chordwise deformation enhances the thrust, saves the power and increases the efficiency. A large $HAR$ can also increase thrust performance. By using the derivative-moment transformation theory at several subdomains to capture the local vortical structures and a force decomposition, it was shown that, at high Strouhal numbers ($St$), the tip vortex is the main source of thrust, whereas the leading-edge vortex (LEV) and trailing-edge vortex weaken the thrust generation. However, at lower $St$, the LEV would enhance the thrust. The least deformation ($W=0$) leads to the largest effective angle of attack, and thus the strongest vortices. However, moderate deformation ($W=0.4$) has an optimal balance between the performance enhancement and the opposite effect of different local structures. The performance enhancement of $HAR$ was also due to the increase of the vortical contributions. This work provides a new insight into the role of vortices and the force enhancement mechanism in aquatic swimming.
Particle–wall interactions have broad biological and technological applications. In particular, some artificial microswimmers capitalize on their translation–rotation coupling near a wall to generate directed propulsion. Emerging biomedical applications of these microswimmers in complex biological fluids prompt questions on the impact of non-Newtonian rheology on their propulsion. In this work, we report some intriguing effects of shear-thinning rheology, a ubiquitous non-Newtonian behaviour of biological fluids, on the translation–rotation coupling of a particle near a wall. One particularly interesting feature revealed here is that the wall-induced translation by rotation can occur in a direction opposite to what might be intuitively expected for an object rolling on a solid substrate. We elucidate the underlying physical mechanism and discuss its implications on the design of micromachines and bacterial motion near walls in complex fluids.
ITGB1 (Integrin β1, CD29) is a member of the integrin family and has a role as a major adhesion receptor. Gastric cancer (GC) is an important cause of mortality worldwide, especially in China. As a potential cancer enhancer, the role ITGB1 plays in GC progression remains unclear. In the current study, our assay on the databases of tumoassociated gene expression and interaction found that the high expression of ITGB1 was closely correlated with the poor prognosis of GC patients. To explore the roles, ITGB1 plays in GC progression, and an ITGB1-deleted cell line (ITGB1−/−SGC7901) was generated using the CRISPR/Cas9 method. The tumor malignancy-associated cell behaviors and microstructures were detected, imaged, and analyzed using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), wound healing, transwell, scanning electron microscopy, laser scanning confocal microscopy, and others. The results indicated that ITGB1 deletion decreased the GC cell proliferation and motility, and inhibited motility-relevant microstructures, such as pseudopodia and filopodia, markedly in ITGB1-deleted SGC7901 cells. The analysis of STRING database and western blots indicated that ITGB1 contributes to the malignancy of GC mediated by Src-mediated FAK/PI3K/Akt signaling pathways. Taken together, the results showed that ITGB1 may be a potential targeting marker for GC diagnosis and therapy in the future.
The leakage of hazardous chemicals and toxic volatile substances in the atmosphere may cause serious consequences such as explosion and poisoning. To identify the unknown leakage locations and gas compositions, a mobile robot system to trace the leak source in the outdoor was investigated. First, two bionic searching algorithms, Zigzag and Silkworm algorithms, were tested with outdoor experiments for locating the leak source. The results showed that the locating errors of these two algorithms were within 0.5 m in 10 by 20 m search space, but the failing ratio of Zigzag and Silkworm algorithm was still high (about 40–50%). Therefore, an improved tracing algorithm combining the Silkworm and Zigzag algorithm, called as zigzag–Silkworm algorithm, was proposed. Compared with Silkworm and Zigzag algorithms, zigzag–Silkworm algorithm had a higher success ratio of 80% in outdoor source tracing tests, and the searching efficiency was enhanced, the efficiency parameter L: L0 has improved from 2.58 for Silkworm and 2.66 for Zigzag to 2.17 for zigzag–Silkworm. Then, in order to identify the composition of the leaked gases during the source tracing, an artificial olfaction system (AOS) based on the gas sensor array and support vector machine was set on the mobile robot. The test results in the source tracing experiments with ammonia and ethanol emissions indicated that the recognition accuracy of emission gases reached to 99% with AOS equipped on the robot. Therefore, the mobile robot system equipped with the zigzag–Silkworm algorithm and the AOS is feasible to trace the leakage source and identify the emission composition in the outdoor leakage event with good performance in efficiency and accuracy although some underlying problems still need to be addressed in future work.
Microtubule-severing protein (MTSP) is critical for the survival of both mitotic and postmitotic cells. However, the study of MTSP during meiosis of mammalian oocytes has not been reported. We found that spastin, a member of the MTSP family, was highly expressed in oocytes and aggregated in spindle microtubules. After knocking down spastin by specific siRNA, the spindle microtubule density of meiotic oocytes decreased significantly. When the oocytes were cultured in vitro, the oocytes lacking spastin showed an obvious maturation disorder. Considering the microtubule-severing activity of spastin, we speculate that spastin on spindles may increase the number of microtubule broken ends by severing the microtubules, therefore playing a nucleating role, promoting spindle assembly and ensuring normal meiosis. In addition, we found the colocalization and interaction of collapsin response mediator protein 5 (CRMP5) and spastin in oocytes. CRMP5 can provide structural support and promote microtubule aggregation, creating transportation routes, and can interact with spastin in the microtubule activity of nerve cells (30). Knocking down CRMP5 may lead to spindle abnormalities and developmental disorders in oocytes. Overexpression of spastin may reverse the abnormal phenotype caused by the deletion of CRMP5. In summary, our data support a model in which the interaction between spastin and CRMP5 promotes the assembly of spindle microtubules in oocytes by controlling microtubule dynamics, therefore ensuring normal meiosis.
N6-Methyladenosine (m6A) regulates oocyte-to-embryo transition and the reprogramming of somatic cells into induced pluripotent stem cells. However, the role of m6A methylation in porcine early embryonic development and its reprogramming characteristics in somatic cell nuclear transfer (SCNT) embryos are yet to be known. Here, we showed that m6A methylation was essential for normal early embryonic development and its aberrant reprogramming in SCNT embryos. We identified a persistent occurrence of m6A methylation in embryos between 1-cell to blastocyst stages and m6A levels abruptly increased during the morula-to-blastocyst transition. Cycloleucine (methylation inhibitor, 20 mM) treatment efficiently reduced m6A levels, significantly decreased the rates of 4-cell embryos and blastocysts, and disrupted normal lineage allocation. Moreover, cycloleucine treatment also led to higher levels in both apoptosis and autophagy in blastocysts. Furthermore, m6A levels in SCNT embryos at the 4-cell and 8-cell stages were significantly lower than that in parthenogenetic activation (PA) embryos, suggesting an abnormal reprogramming of m6A methylation in SCNT embryos. Correspondingly, expression levels of m6A writers (METTL3 and METTL14) and eraser (FTO) were apparently higher in SCNT 8-cell embryos compared with their PA counterparts. Taken together, these results indicated that aberrant nuclear transfer-mediated reprogramming of m6A methylation was involved in regulating porcine early embryonic development.
Emerging from the warehouse of knowledge about terrestrial ecosystem functioning and the application of the systems ecology paradigm, exemplified by the power of simulation modeling, tremendous strides have been made linking the interactions of the land, atmosphere, and water locally to globally. Through integration of ecosystem, atmospheric, soil, and more recently social science interactions, plausible scenarios and even reasonable predictions are now possible about the outcomes of human activities. The applications of that knowledge to the effects of changing climates, human-caused nitrogen enrichment of ecosystems, and altered UV-B radiation represent challenges addressed in this chapter. The primary linkages addressed are through the C, N, S, and H2O cycles, and UV-B radiation. Carbon dioxide exchanges between land and the atmosphere, N additions and losses to and from lands and waters, early studies of SO2 in grassland ecosystem, and the effects of UV-B radiation on ecosystems have been mainstays of research described in this chapter. This research knowledge has been used in international and national climate assessments, for example the IPCC, US National Climate Assessment, and Paris Climate Accord. Likewise, the knowledge has been used to develop concepts and technologies related to sustainable agriculture, C sequestration, and food security.
This study aimed to evaluate to what extent the different interval times between trophectoderm (TE) biopsy and vitrification influence the clinical outcomes in preimplantation genetic testing (PGT) cycles. Patients who underwent frozen embryo transfer (FET) after PGT between 2015 and 2019 were recruited. In total, 297 cycles with single day 5 euploid blastocyst transfer were included. These cycles were divided into three groups according to the interval times: <1 h group, 1–2 h group, and ≥2 h group. Blastocyst survival, clinical pregnancy, miscarriage, and ongoing pregnancy rates were compared. The results showed that, in PGT-SR cycles, survival rate in the ≥2 h group (96.72%) was significantly lower than in the <1 h group (100%, P = 0.047). The clinical pregnancy rate in the ≥2 h group was 55.93%, significantly lower than in the <1 h group (74.26%, P = 0.017). The ongoing pregnancy rates in the 1–2 h group and the ≥2 h group were 48.28% and 47.46%, respectively, significantly lower than that in the <1 h group (67.33%, P < 0.05). The miscarriage rate in the 1–2 h group was 18.42%, significantly higher than that in the <1 h group (5.33%, P = 0.027). In PGT-A cycles, the clinical pregnancy and ongoing pregnancy rates in the <1 h group were 67.44% and 53.49%, respectively, higher than that in the 1–2 h group (52.94%, 47.06%, P > 0.05) and the ≥2 h group (52.63%, 36.84%, P > 0.05). In conclusion, vitrification of blastocysts beyond 1 h after biopsy significantly influences embryo survival and clinical outcomes and is therefore not recommended.
The high overall plant-based diet index (PDI) is considered to protect against type 2 diabetes in the general population. However, whether the PDI affects gestational diabetes mellitus (GDM) risk among pregnant women is still unclear. We evaluated the association between PDI and GDM risk based on a Chinese large prospective cohort – the Tongji Maternal and Child Health Cohort. Dietary data were collected at 13–28 weeks of pregnancy by a validated semi-quantitative FFQ. The PDI was obtained by assigning plant food groups positive scores while assigning animal food groups reverse scores. GDM was diagnosed by a 75 g 2-h oral glucose tolerance test at 24–28 weeks of gestation. Logistic regression models were fitted to estimate OR of GDM, with associated 95 % CI, comparing women in different PDI quartiles. Among the total 2099 participants, 169 (8·1 %) were diagnosed with GDM. The PDI ranged from 21·0 to 52·0 with a median of 36·0 (interquartile range (IQR) 33·0–39·0). After adjusting for social-demographic characteristics and lifestyle factors etc., the participants with the highest quartile of PDI were associated with 57 % reduced odds of GDM compared with women in the lowest quartile of PDI (adjusted OR 0·43; 95 % CI 0·24, 0·77; Pfor trend = 0·005). An IQR increment in PDI was associated with 29 % decreased odds of GDM (adjusted OR 0·71; 95 % CI 0·56, 0·90). Findings suggest that adopting a plant-based diet during pregnancy could reduce GDM risk among Chinese women, which may be valuable for dietary counselling during pregnancy.
A study was conducted to identify whether composted manure and straw amendments (replacement of a portion of chemical fertilizer [50% of the total nitrogen application] with composted pig manure, and straw return [all straw from the previous rice crop] combined with chemical fertilizer) compared with no fertilization and chemical fertilizer only would change the dominant species of wheat-associated weeds as well as influence their growth and seed yield in a rice (Oryza sativa L.)–wheat (Triticum aestivum L.) rotation system. The study was initiated in 2010, and the treatment effects on the species, density, plant height, shoot biomass, seed yield of dominant weeds, and wheat yields were assessed in 2017 and 2018. Fertilization significantly increased the height, density, and yield of wheat, as well as the shoot biomass of wheat-associated weeds, but decreased the weed species number. A total of 17 and 14 weed species were recorded in the experimental wheat fields in 2017 and 2018, respectively. The most dominant weed species were American sloughgrass [Beckmannia syzigachne (Steud.) Fernald] and catchweed bedstraw (Galium aparine L.), which made up more than 64% of the weed community in all treatments. When the chemical fertilizer application was amended with pig manure compost and straw return, the relative abundance of B. syzigachne significantly decreased, while the relative abundance of G. aparine significantly increased. The application of the chemical fertilizer-only treatment resulted in increases in the density, shoot biomass, and seed yield of B. syzigachne, while the composted manure and straw amendments applied together with chemical fertilizer led to significant increases in the density, shoot biomass, and seed yield of G. aparine. Consequently, further research on ways to promote greater cropping system diversity will be needed to prevent the selection of weed species that are adapted to a limited suite of crop management practices.
Mode distortion induced by stimulated Raman scattering (SRS) has become a new obstacle for the further development of high-power fiber lasers with high beam quality. Here, an approach for effective suppression of the SRS-induced mode distortion in high-power fiber amplifiers has been demonstrated experimentally by adjusting the seed power (output power of seed source) and forward feedback coefficient of the rear port in the seed source. It is shown that the threshold power of the SRS-induced mode distortion can be increased significantly by reducing the seed power or the forward feedback coefficient. Moreover, it has also been found that the threshold power is extremely sensitive to the forward feedback power value from the rear port. The influence of the seed power on the threshold power can be attributed to the fact that the seed power plays an important role in the effective length of the gain fiber in the amplifier. The influence of the forward feedback coefficient on the threshold power can be attributed to the enhanced SRS configuration because the end surface of the rear port together with the fiber in the amplifier constitutes a half-opening cavity. This suppression approach will be very helpful to further develop the high-power fiber amplifiers with high beam quality.