We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
The 16-8-, 8-5-, 5-2-, 2-1-, 1-0.5-, 0.5-0.3-, 0.3-0.1-, and <0.1-μm size fractions were centrifuged from a Georgia (U.S.A.) sedimentary kaolin and a hydrothermal kaolin from the Sasso mine (Italy) and analyzed by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), infrared spectroscopy (IR), differential thermal analysis (DTA) and thermogravimetry (TGA) together with the corresponding whole rocks. All size fractions of the Georgia sample consisted dominantly of well-crystallized, fine-grained kaolinite, associated with minor quantities of smectite. Some halloysite-like elongate particles were noted by SEM in the intermediate size fractions, minor amounts of quartz were identified in the coarsest size fractions, and < 1% noncrystalline material and traces of organic material were suspected in the finest size fraction. The crystallinity of the kaolinite as measured by XRD and IR varied moderately with size. IR suggested that nacrite-like stacking disorder increased with decreasing size for particles < 5 μm in size.
In the Sasso sample kaolinite dominated all size fractions and was accompanied by dickite in the coarse and by halloysite in the fine size fractions. Regular mixed-layer illite/smectite (I/S) was present in all size fractions and dominated in the finest. Abundant quartz and traces of alunite were identified in the whole rock and coarsest size fractions. The kaolinite in this sample showed marked variation in stacking order and crystallinity, as shown by changes in XRD, IR, and DTA patterns.
The observed compositional and structural variations in the size fractions of the Georgia sedimentary kaolin are small, as expected from formational environment, which was characterized by low temperatures and relative stable genetic conditions. The much more marked differences in composition within the size fractions of the Sasso hydrothermal kaolin are likely a result of the broad range of temperatures and fluid chemistry of its formational environment. The sequence dickite-well-crystallized kaolinite-kaolinite-halloysite is probably temperature-dependent.
This paper describes in detail phosphate minerals occurring in refractory clays of Missouri and their effect on the refractory degree of the clays. The minerals identified include carbonate-fluorapatite (francolite), crandallite, goyazite, wavellite, variscite and strengite. It is emphasized that these phosphates occur only in local isolated concentrations, and not generally in Missouri refractory clays.
The Missouri fireclay region comprises 2 districts, northern and southern, separated by the Missouri River. In this region, clay constitutes a major part of the Lower Pennsylvanian Cheltenham Formation. The original Cheltenham mud was an argillic residue derived from leaching and dissolution of pre-Pennsylvanian carbonates. The mud accumulated on a karstic erosion surface truncating the pre-Cheltenham rocks. Fireclays of the northern district consist mainly of poorly ordered kaolinite, with variable but minor amounts of illite, chlorite and fine-grained detrital quartz. Clays of the southern district were subjected to extreme leaching that produced well-ordered kaolinite flint clays. Local desilication formed pockets of diaspore, or more commonly, kaolinite, with oolite-like nubs or burls of diaspore (“burley” clay).
The phosphate-bearing materials have been studied by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive spectral analysis (SEM-EDS) and chemical analysis. Calcian goyazite was identified in a sample of diaspore, and francolite in a sample of flint clay. A veinlet of wavellite occurs in flint clay at one locality, and a veinlet of variscite-strengite at another locality.
The Missouri flint-clay-hosted francolite could not have formed in the same manner as marine francolite. The evidence suggests that the Cheltenham francolite precipitated from ion complexes in pore water, nearly simultaneously with crystallization of kaolinite flint clay from an alumina-silica gel. Calcian goyazite is an early diagenetic addition to its diaspore host. The wavellite and variscite-strengite veinlets are secondary, precipitated from ion complexes in ground water percolating along cracks in the flint clay. The flint clay host of the variscite-strengite veinlet contains strontian crandallite. All of the phosphates contain significant amounts of strontium. The source of P, Ca and Sr was the marine carbonates. Dissolution of these carbonates produced the argillic residue that became the primordial Cheltenham paludal mud, which ultimately altered to fireclay.
Preliminary firing tests show that the presence of phosphates lowers fusion temperature. However, it is not clear whether poor refractoriness is due to the presence of phosphates, per se, or to Ca, Sr and other alkaline elements present in the phosphates.
Email your librarian or administrator to recommend adding this to your organisation's collection.