A coarse-grained model of peptide amphiphiles (PA) dissolved in aqueous solution was presented, where the effects of PA concentration, temperature and shear stress upon the self-assembly of PA were numerically studied by dissipative particle dynamics (DPD) simulation. We technically investigate the repulsion parameter aHW which indicates the repulsion force between the hydrophilic head of PA and water molecules, hence, at the same time, indicating the change in temperature. It was found that aHW played an important role in the self-assembly dynamics and in the resulting micro-structures of PA. By imposing shear strain on the simulation system, the formation of wormlike PA micelles was accelerated. The simulation results were in good agreement with our previous experimental results and the mechanism of shear-induced transition was proposed.