We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
This study involves an investigation of the mechanism underlying activating effects of inorganic additives on the oxidation of aluminum. The oxidation of nano aluminum powders in air was characterized by variable temperature x-ray powder diffraction and thermogravimetric analysis. For a 33-nm aluminum powder the aluminum oxide produced by air oxidation was poorly crystallized until the sample was heated to above 1050°C, where the alpha-alumina phase crystallized. For a mixture of the aluminum with cryolite, crystallization of oxide phases is enhanced, with Na-Al-O phases evident at 550°C and above. Fluorine is lost from the sample between 550 and 850°C, presumably due to reaction with moisture to produce HF. In a similar experiment with aluminum and silver molybdate, the only crystalline product was alpha-alumina, which was observed at 550°C and higher. The general result is that alpha-alumina, the ultimate product in most cases, crystallized at a lower temperature when activating agents were present.
Email your librarian or administrator to recommend adding this to your organisation's collection.