We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Previous analyses of grey and white matter volumes have reported that schizophrenia is associated with structural changes. Deep learning is a data-driven approach that can capture highly compact hierarchical non-linear relationships among high-dimensional features, and therefore can facilitate the development of clinical tools for making a more accurate and earlier diagnosis of schizophrenia.
Aims
To identify consistent grey matter abnormalities in patients with schizophrenia, 662 people with schizophrenia and 613 healthy controls were recruited from eight centres across China, and the data from these independent sites were used to validate deep-learning classifiers.
Method
We used a prospective image-based meta-analysis of whole-brain voxel-based morphometry. We also automatically differentiated patients with schizophrenia from healthy controls using combined grey matter, white matter and cerebrospinal fluid volumetric features, incorporated a deep neural network approach on an individual basis, and tested the generalisability of the classification models using independent validation sites.
Results
We found that statistically reliable schizophrenia-related grey matter abnormalities primarily occurred in regions that included the superior temporal gyrus extending to the temporal pole, insular cortex, orbital and middle frontal cortices, middle cingulum and thalamus. Evaluated using leave-one-site-out cross-validation, the performance of the classification of schizophrenia achieved by our findings from eight independent research sites were: accuracy, 77.19–85.74%; sensitivity, 75.31–89.29% and area under the receiver operating characteristic curve, 0.797–0.909.
Conclusions
These results suggest that, by using deep-learning techniques, multidimensional neuroanatomical changes in schizophrenia are capable of robustly discriminating patients with schizophrenia from healthy controls, findings which could facilitate clinical diagnosis and treatment in schizophrenia.
Tobacco smoking remains one of the leading causes of preventable illness and death and is heritable with complex underpinnings. Converging evidence suggests a contribution of the polygenic risk for smoking to the use of tobacco and other substances. Yet, the underlying brain mechanisms between the genetic risk and tobacco smoking remain poorly understood.
Methods
Genomic, neuroimaging, and self-report data were acquired from a large cohort of adolescents from the IMAGEN study (a European multicenter study). Polygenic risk scores (PGRS) for smoking were calculated based on a genome-wide association study meta-analysis conducted by the Tobacco and Genetics Consortium. We examined the interrelationships among the genetic risk for smoking initiation, brain structure, and the number of occasions of tobacco use.
Results
A higher smoking PGRS was significantly associated with both an increased number of occasions of tobacco use and smaller cortical volume of the right orbitofrontal cortex (OFC). Furthermore, reduced cortical volume within this cluster correlated with greater tobacco use. A subsequent path analysis suggested that the cortical volume within this cluster partially mediated the association between the genetic risk for smoking and the number of occasions of tobacco use.
Conclusions
Our data provide the first evidence for the involvement of the OFC in the relationship between smoking PGRS and tobacco use. Future studies of the molecular mechanisms underlying tobacco smoking should consider the mediation effect of the related neural structure.
Genome-wide association studies (GWAS) have consistently revealed that a variant of microRNA 137 (MIR137) shows a quite significant association with schizophrenia. Identifying the network of genes regulated by MIR137 could provide insights into the biological processes underlying schizophrenia. In addition, DLPFC functional connectivity, a robust correlate of MIR137, may provide plausible endophenotypes. However, the regulatory role of the MIR137 gene network in the disrupted functional connectivity remains unclear. Here, we tested the effects of the MIR137 regulated genes on the risk for schizophrenia and DLPFC functional connectivity.
Methods
To evaluate the additive effects of the MIR137 regulated genes (N = 1274), we calculated a MIR137 polygenic risk score (PRS) for schizophrenia and tested its association with the risk for schizophrenia in the genomic data of a Han Chinese population that included schizophrenia patients (N = 589) and normal controls (N = 575). We then investigated the association between MIR137 PRS and DLPFC functional connectivity in two independent young healthy cohorts (N = 356 and N = 314).
Results
We found that the MIR137 PRS successfully captured the differences in genetic structure between the patients and controls, but the single gene MIR137 did not. We then consistently found that a higher MIR137 PRS was correlated with lower functional connectivities between the DLPFC and both the superior parietal cortex and the inferior temporal cortex in two independent cohorts.
Conclusion
The findings suggested that these two functional connectivities of the DLPFC could be important endophenotypes linking the MIR137-regulated genetic structure to schizophrenia.
Schizophrenia is a complex mental disorder with high heritability and polygenic inheritance. Multimodal neuroimaging studies have also indicated that abnormalities of brain structure and function are a plausible neurobiological characterisation of schizophrenia. However, the polygenic effects of schizophrenia on these imaging endophenotypes have not yet been fully elucidated.
Aims
To investigate the effects of polygenic risk for schizophrenia on the brain grey matter volume and functional connectivity, which are disrupted in schizophrenia.
Method
Genomic and neuroimaging data from a large sample of Han Chinese patients with schizophrenia (N = 509) and healthy controls (N = 502) were included in this study. We examined grey matter volume and functional connectivity via structural and functional magnetic resonance imaging, respectively. Using the data from a recent meta-analysis of a genome-wide association study that comprised a large number of Chinese people, we calculated a polygenic risk score (PGRS) for each participant.
Results
The imaging genetic analysis revealed that the individual PGRS showed a significantly negative correlation with the hippocampal grey matter volume and hippocampus–medial prefrontal cortex functional connectivity, both of which were lower in the people with schizophrenia than in the controls. We also found that the observed neuroimaging measures showed weak but similar changes in unaffected first-degree relatives of patients with schizophrenia.
Conclusions
These findings suggested that genetically influenced brain grey matter volume and functional connectivity may provide important clues for understanding the pathological mechanisms of schizophrenia and for the early diagnosis of schizophrenia.
Objective: Functional imaging studies of post-traumatic stress disorder (PTSD) have shown an increased activation of posterior cingulate gyrus (PCG) of the brain. The aim of this study was to explore white matter integrity of PCG in PTSD subjects.
Methods: White matter integrity, as determined from fractional anisotropy (FA) value using diffusion tensor imaging, was assessed for PCG in subjects with and without PTSD from a severe mine accident. All subjects were also measured by the PTSD Checklist Civilian Version (PCL-C), the State-Trait Anxiety Inventory (STAI), the logical memory subtest and the visual reproduction subtest of the Wechsler Memory Scale-Revised in China. Sixteen PTSD subjects (8 subjects in each group) in the longitudinal study and 13 PTSD subjects as well as 14 non-PTSD controls in the cross-sectional case–control study were respectively recruited.
Results: In the longitudinal study, subjects with PTSD showed increased FA values in left PCG during the follow-up scan. In the cross-sectional study, FA values in bilateral PCG in PTSD subjects were higher than controls. Within the PTSD group (n = 13), FA values in the left PCG correlated positively with logical memory and negatively with PCL-C intrusion and STAI-trait (STAI-t) subscores. FA values in right PCG correlated negatively with STAI-t and STAI-state subscores.
Conclusion: These findings suggest that alterations of white matter integrity in PCG link to mnemonic and affective processing in PTSD over the long-term follow-up period.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.