We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
We present a calibration component for the Murchison Widefield Array All-Sky Virtual Observatory (MWA ASVO) utilising a newly developed PostgreSQL database of calibration solutions. Since its inauguration in 2013, the MWA has recorded over 34 petabytes of data archived at the Pawsey Supercomputing Centre. According to the MWA Data Access policy, data become publicly available 18 months after collection. Therefore, most of the archival data are now available to the public. Access to public data was provided in 2017 via the MWA ASVO interface, which allowed researchers worldwide to download MWA uncalibrated data in standard radio astronomy data formats (CASA measurement sets or UV FITS files). The addition of the MWA ASVO calibration feature opens a new, powerful avenue for researchers without a detailed knowledge of the MWA telescope and data processing to download calibrated visibility data and create images using standard radio astronomy software packages. In order to populate the database with calibration solutions from the last 6 yr we developed fully automated pipelines. A near-real-time pipeline has been used to process new calibration observations as soon as they are collected and upload calibration solutions to the database, which enables monitoring of the interferometric performance of the telescope. Based on this database, we present an analysis of the stability of the MWA calibration solutions over long time intervals.
The Murchison Widefield Array (MWA) has observed the entire southern sky (Declination,
$\delta< 30^{\circ}$
) at low radio frequencies, over the range 72–231MHz. These observations constitute the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey, and we use the extragalactic catalogue (EGC) (Galactic latitude,
$|b| >10^{\circ}$
) to define the GLEAM 4-Jy (G4Jy) Sample. This is a complete sample of the ‘brightest’ radio sources (
$S_{\textrm{151\,MHz}}>4\,\text{Jy}$
), the majority of which are active galactic nuclei with powerful radio jets. Crucially, low-frequency observations allow the selection of such sources in an orientation-independent way (i.e. minimising the bias caused by Doppler boosting, inherent in high-frequency surveys). We then use higher-resolution radio images, and information at other wavelengths, to morphologically classify the brightest components in GLEAM. We also conduct cross-checks against the literature and perform internal matching, in order to improve sample completeness (which is estimated to be
$>95.5$
%). This results in a catalogue of 1863 sources, making the G4Jy Sample over 10 times larger than that of the revised Third Cambridge Catalogue of Radio Sources (3CRR;
$S_{\textrm{178\,MHz}}>10.9\,\text{Jy}$
). Of these G4Jy sources, 78 are resolved by the MWA (Phase-I) synthesised beam (
$\sim2$
arcmin at 200MHz), and we label 67% of the sample as ‘single’, 26% as ‘double’, 4% as ‘triple’, and 3% as having ‘complex’ morphology at
$\sim1\,\text{GHz}$
(45 arcsec resolution). We characterise the spectral behaviour of these objects in the radio and find that the median spectral index is
$\alpha=-0.740 \pm 0.012$
between 151 and 843MHz, and
$\alpha=-0.786 \pm 0.006$
between 151MHz and 1400MHz (assuming a power-law description,
$S_{\nu} \propto \nu^{\alpha}$
), compared to
$\alpha=-0.829 \pm 0.006$
within the GLEAM band. Alongside this, our value-added catalogue provides mid-infrared source associations (subject to 6” resolution at 3.4
$\mu$
m) for the radio emission, as identified through visual inspection and thorough checks against the literature. As such, the G4Jy Sample can be used as a reliable training set for cross-identification via machine-learning algorithms. We also estimate the angular size of the sources, based on their associated components at
$\sim1\,\text{GHz}$
, and perform a flux density comparison for 67 G4Jy sources that overlap with 3CRR. Analysis of multi-wavelength data, and spectral curvature between 72MHz and 20GHz, will be presented in subsequent papers, and details for accessing all G4Jy overlays are provided at https://github.com/svw26/G4Jy.
The entire southern sky (Declination,
$\delta< 30^{\circ}$
) has been observed using the Murchison Widefield Array (MWA), which provides radio imaging of
$\sim$
2 arcmin resolution at low frequencies (72–231 MHz). This is the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey, and we have previously used a combination of visual inspection, cross-checks against the literature, and internal matching to identify the ‘brightest’ radio-sources (
$S_{\mathrm{151\,MHz}}>4$
Jy) in the extragalactic catalogue (Galactic latitude,
$|b| >10^{\circ}$
). We refer to these 1 863 sources as the GLEAM 4-Jy (G4Jy) Sample, and use radio images (of
${\leq}45$
arcsec resolution), and multi-wavelength information, to assess their morphology and identify the galaxy that is hosting the radio emission (where appropriate). Details of how to access all of the overlays used for this work are available at https://github.com/svw26/G4Jy. Alongside this we conduct further checks against the literature, which we document here for individual sources. Whilst the vast majority of the G4Jy Sample are active galactic nuclei with powerful radio-jets, we highlight that it also contains a nebula, two nearby, star-forming galaxies, a cluster relic, and a cluster halo. There are also three extended sources for which we are unable to infer the mechanism that gives rise to the low-frequency emission. In the G4Jy catalogue we provide mid-infrared identifications for 86% of the sources, and flag the remainder as: having an uncertain identification (129 sources), having a faint/uncharacterised mid-infrared host (126 sources), or it being inappropriate to specify a host (2 sources). For the subset of 129 sources, there is ambiguity concerning candidate host-galaxies, and this includes four sources (B0424–728, B0703–451, 3C 198, and 3C 403.1) where we question the existing identification.
Email your librarian or administrator to recommend adding this to your organisation's collection.