We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Lithospheric thinning occurred in the North China Craton (NCC) that resulted in extensive Mesozoic magmatism, which has provided the opportunity to explore the mechanism of the destruction of the NCC. In this study, new zircon U–Pb ages, geochemical and Lu–Hf isotopic data are presented for Early Cretaceous adakitic rocks in the Liaodong Peninsula, with the aim of establishing their origin as well as the thinning mechanism of the NCC. The zircon U–Pb data show that crystallization occurred during 127–120 Ma (i.e. Early Cretaceous). These rocks are characterized by high Sr (294–711 ppm) content and Sr/Y ratio (38.5–108), low Yb (0.54–1.24 ppm) and Y (4.9–16.4 ppm) contents, and with no obvious Eu anomalies, implying that they are adakitic rocks. They are enriched in large-ion lithophile elements (e.g. Ba, K, Pb and Sr) and depleted in high-field-strength elements (e.g. Nb, Ta, P and Ti). These adakitic rocks have negative zircon ϵHf(t) contents (−28.9 to −15.0) with two-stage Hf model ages (TDM2) of 3004–2131 Ma. Based on the geochemical features, such as low TiO2 and MgO contents, and high La/Yb and K2O/Na2O ratios, these adakites originated from the partial melting of thickened eclogitic lower crust. They were in an extensional setting associated with the slab rollback of the Palaeo-Pacific Ocean. In combination with previous studies, as a result of the rapid retracting of the Palaeo-Pacific Ocean during 130–120 Ma, the asthenosphere upwelled and modified the thickened lithospheric mantle, which lost its stability, resulting in the lithospheric delamination and thinning of the NCC.
To address the shortcomings of existing methods for rotorcraft searching, positioning, tracking and landing on a ship at sea, a dual-channel LIDAR searching, positioning, tracking and landing system (DCLSPTLS) is proposed in this paper, which utilises the multi-pulse laser echoes accumulation method and the physical phenomenon that the laser reflectivity of the ship deck in the near-infrared band is four orders of magnitude higher than that of the sea surface. The DCLSPTLS searching and positioning model, tracking model and landing model are established, respectively. The searching and positioning model can provide estimates of the azimuth angle, the distance of the ship relative to the rotorcraft and the ship's course. With the above parameters as inputs, the total tracking time and the direction of the rotorcraft tracking speed can be obtained by using the tracking model. The landing model can calculate the pitch and the roll angles of the ship's deck relative to the rotorcraft by using the least squares method and the laser irradiation coordinates. The simulation shows that the DCLSPTLS can realise the functions of rotorcraft searching, positioning, tracking and landing by using the above parameters. To verify the effectiveness of the DCLSPTLS, a functional test is performed using a rotorcraft and a model ship on a lake. The test results are consistent with the results of the simulation.
This experiment was conducted to evaluate the impact of substituting rice straw with citrus pulp (CRP), sweet potato peels (SPP) and vines (SPV) on fermentation quality and in vitro digestibility when ensiled with or without wet brewers' grains (WBG). Seven treatments were set as follows: (i) rice straw only (control); (ii) 800 g rice straw/kg + 200 g CRP/kg (RC); (iii) 720 g rice straw/kg + 180 g CRP/kg + 100 g WBG/kg (RC+); (iv) 800 g rice straw/kg + 200 g SPP/kg (RP); (v) 720 g rice straw + 180 g SPP/kg + 100 g WBG/kg (RP+); (vi) 800 g rice straw/kg + 200 g SPV/kg (RV); (vii) 720 g rice straw/kg + 180 g SPV/kg + 100 g WBG/kg (RV+). After ensiling for 3, 7, 14, 30 and 60 days, silos were opened for fermentation profile, aerobic stability and in vitro parameter analyses. All substitution types improved fermentation quality, characterized by significantly lower pH and NH3-N content, higher lactic acid content and V-scores. WBG application promoted hetero-fermentation and significantly increased DM losses, acetic acid and ethanol contents. After 60 days of ensiling, the NDF, ADF and cellulose contents in mixed silages significantly decreased compared to control. During aerobic exposure, WBG application significantly prolonged aerobic stability. SPV substitution significantly improved in vitro digestibility of dry matter, NDF and ADF. In conclusion, the SPP substitution combined with WBG application was recommended as a result of the optimal balance of fermentation quality, aerobic stability and in vitro digestibility.
Using detailed data on company visits by Chinese mutual funds, we provide direct evidence of mutual fund information acquisition activities and the consequent informational advantages mutual funds establish in local firms. Mutual funds are more likely to visit local and nearby firms both in and outside of their portfolios, but the ease of travel between fund and firm locations can substantially alleviate geographic distance constraints. Company visits by mutual funds are strongly associated with both fund trading activities and fund trading performance. Our results show that geographic constraints and costly information acquisition amplify information asymmetry in financial markets.
To investigate the effect of maternal hepatitis B surface antigen (HBsAg) carrier status during pregnancy on pregnancy outcomes in a population of patients in Hangzhou, China. A retrospective cohort study was conducted to analyse data from 20 753 pregnant women who delivered at Hangzhou Women's Hospital between January 2015 and March 2020. Of these, 18 693 were normal pregnant women (the non-exposed group) and 735 were HBsAg carriers (the exposed group). We then analysed by binary multivariate logistic regression to determine the association between maternal HBsAg-positive and adverse pregnancy outcomes. The prevalence of HBsAg carriers was 3.78% and the odds ratio (OR) for maternal age in the exposed group was 1.081. Pregnant women who are HBsAg-positive in Hangzhou, China, are at higher risk of a range of adverse pregnancy outcomes, including intrahepatic cholestasis of pregnancy (ICP) (adjusted OR (aOR) 3.169), low birth weight (aOR 2.337), thrombocytopenia (aOR 2.226), fallopian cysts (aOR 1.610), caesarean scar pregnancy (aOR 1.283), foetal distress (aOR 1.414). Therefore, the obstetricians should pay particular attention to ICP, low birth weight, thrombocytopenia, fallopian cysts, caesarean scar, foetal distress in HBsAg-positive pregnant women.
The mumps resurgence has frequently been reported around the world in recent years, especially in many counties mumps vaccines have been widely used. This study aimed to describe the spatial epidemiological characteristics of mumps in Jiangsu, and provide a scientific basis for the implementation and adjustment of strategies to prevent and control mumps. The epidemiological characteristics were described with ratio or proportion. Spatial autocorrelation, Tango's flexible spatial scan statistics, and Kulldorff's elliptic spatiotemporal scan statistics were applied to identify the spatial autocorrelation, detect hot and cold spots of mumps incidence, and aggregation areas. A total of 172 775 cases were reported from 2004 to 2020 in Jiangsu. The general trend of mumps incidence is declining with a bimodal seasonal distribution identified mainly in summer and winter, respectively. Children aged 5–10 years old are the main risk group. A migration trend of hot spots from southeast to northwest over time was found. Similar high-risk aggregations were detected in the northwestern parts through spatial-temporal analysis with the most likely cluster time frame around 2019. Local medical and health administrations should formulate and implement targeted health care policies and allocate health resources more appropriately corresponding to the epidemiological characteristics of mumps.
Globalization in clinical trials for Alzheimer’s disease (AD) drug development has increased rapidly. It would substantially support persons with dementia to access novel therapeutics in a coordinated and efficient manner. In this chapter, we overview the significant drives of globalization in AD drug development: the growth of the world’s AD population, the need for a larger sample in trials to secure enrollment in the required timeframe, and the ethnographic and ethnobiological contributors. We also discuss the major issues relevant to global trials: the geographic variation across trial sites, the differences in study participants, and the lack of harmonized global regulatory mechanisms. In the end, this chapter recommends that improving site performance, enhancing infrastructure development, and promoting universal regulatory mechanism should be prioritized to maximize the contribution of globalization to the AD drug development ecosystem.
In this paper, a novel self-adaptive underactuated robot hand with rigid-flexible coupling fingers (SAU-RFC hand) is proposed. The seven degrees of freedom (DOFs) SAU-RFC hand is driven by four servomotors, consists of three fingers, including two side-turning (ST) fingers and one non-side-turning finger. Specially, the ST fingers can perform synchronous reverse rotation laterally with each other. Each finger with three joints and two DOFs introduces a flexible structure, and the inner part of the proximal phalanx that makes most of the contact with the object is replaced by a flexible belt. The fingers can generate flexion/extension under the pull of the flexible belt, and the middle and distal phalanxes are mechanically coupled through a four-bar linkage. In particular, the flexible belt in the inner direction of the finger will deform, while it will not deform in the outer direction since the outer is a rigid structure. The flexible belt not only plays the role of transmitting power but also has the effect of uniformizing the contact force. Due to the rigid-flexible finger structure, the developed robot hand has a higher self-adaptive grasping ability for objects with different shapes, sizes, and hardness. In addition, the kinematic and kinetic analyses of SAU-RFC hand are performed. A contact force distribution model is established for the flexible belt, which demonstrates its effect of promoting uniform force distribution theoretically. In the end, experiments are conducted on different objects to verify the performance of SAU-RFC hand.
“Picking out the impurities” is a typical scenario in production line which is both time consuming and laborious. In this article, we propose a target-oriented robotic push-grasping system which is able to actively discover and pick the impurities in dense environments with the synergies between pushing and grasping actions. First, we propose an attention module, which includes target saliency detection and density-based occluded-region inference. Without the necessity of expensive labeling of semantic segmentation, our attention module can quickly locate the targets in the view or predict the candidate regions where the targets are most likely to be occluded. Second, we propose a push–grasp synergy framework to sequentially select proper actions in different situations until all targets are picked out. Moreover, we introduce an active pushing mechanism based on a novel metric, namely Target-Centric Dispersion Degree (TCDD) for better grasping. TCDD describes whether the targets are isolated from the surrounding objects. With this metric, the robot becomes more focused on the actions around the targets and push irrelevant objects away. Experimental results on both simulated environment and real-world environment show that our proposed system outperforms several baseline approaches,which also has the capability to be generalized to new scenarios.
Developmental signals and environmental stresses regulate carbon distribution in the vegetative and reproductive organs of plants and affect seed yield. Cleistogenes songorica is a xerophytic grass with great potential application value in ecological restoration. However, how carbohydrate transport and distribution during grain filling affect the seed yield of C. songorica under water stress is not clear. The present study showed that the soluble sugar and starch contents of cleistogamous (CL) spikes and chasmogamous (CH) spikes were significantly higher at the milk stage, which was attributed to a significantly higher seed number and seed yield per spike under water stress conditions than under well-watered conditions (P < 0.01). RNA-seq data revealed a total of 54,525 differentially expressed genes (DEGs) under water stress conditions, but only 3744 DEGs were shared among all comparison groups. Weighted gene co-expression network analysis showed that the transport and distribution of carbohydrates were regulated by ABA-responsive genes (CsABA8OX1_1, CsABA8OX1_2, CsABA8OX2_1, CsABA8OX2_2, CsNCED3, CsNCED1_1, CsNCED1_2 and CsNCED4_1) and sugar transport and starch synthesis genes (CsSUS1, CsSUS2, CsSUS3, CsAGP1, CsAGP4, CsAGP5, CsSSS1 and CsSBE5) under water stress conditions. These genes jointly regulated carbohydrate remobilization in sources (stems, leaves and sheaths) to promote grain filling and improve seed yield. The present study helped to clarify the phenotypic, metabolic and transcriptional response mechanisms of vegetative organs, such as stems and leaves, and reproductive organs, such as CL spikes and CH spikes, to promote carbohydrate redistribution under water stress, and it provides theoretical guidance for improving seed yields.
Grey matter (GM) reduction is a consistent observation in established late stages of schizophrenia, but patients in the untreated early stages of illness display an increase as well as a decrease in GM distribution relative to healthy controls (HC). The relative excess of GM may indicate putative compensatory responses, though to date its relevance is unclear.
Methods
343 first-episode treatment-naïve patients with schizophrenia (FES) and 342 HC were recruited. Multivariate source-based morphometry was performed to identify covarying ‘networks' of grey matter concentration (GMC). Neurocognitive scores using the Cambridge Neuropsychological Test Automated Battery (CANTAB) and symptom burden using the Positive and Negative Symptoms Scale (PANSS) were obtained. Bivariate linear relationships between GMC and cognition/symptoms were studied.
Results
Compared to healthy subjects, FES had prominently lower GMC in two components; the first consists of the anterior insula, inferior frontal gyrus, anterior cingulate and the second component with the superior temporal gyrus, precuneus, inferior/superior parietal lobule, cuneus, and lingual gyrus. Higher GMC was seen in adjacent areas of the middle and superior temporal gyrus, middle frontal gyrus, inferior parietal cortex and putamen. Greater GMC of this component was associated with lower duration of untreated psychosis, less severe positive symptoms and better performance on cognitive tests.
Conclusions
In untreated stages of schizophrenia, both a distributed lower and higher GMC is observable. While the higher GMC is relatively modest, it occurs across frontoparietal, temporal and subcortical regions in association with reduced illness burden suggesting a compensatory role for higher GMC in the early stages of schizophrenia.
When conducting accident analysis, the assessment of risk is one of the important links. Moreover, with regards to crew training, risk cognition is also an important training subject. However, most of the existing researches only rely on a single or a few data sources. It is necessary to fuse the collected multi-source data to obtain a more comprehensive risk evaluation model. There are few studies on the three-dimensional (3D) multi-modal data-fusion-based trajectory risk cognition. In this paper, a fuzzy logic-based trajectory risk cognition method is proposed based on multi-model spatial data fusion and accident data mining. First, the necessity of multi-model spatial data fusion is analysed and a data-fusion-based scene map is constructed. Second, a risk cognition model fused by multiple factors, multi-dimensional spatial calculations as well as data mining results is proposed, including a novel ship boundary calculation approach and newly constructed factors. Finally, a radar chart is used to illustrate the risk, and a risk cognition system is developed. Experiment results confirm the effectiveness of the method. It can be applied to train human operators of unmanned ship systems.
We performed U–Pb dating of detrital zircons and conducted petrological and whole-rock geochemical analyses to assess the provenance of the Upper Triassic – Lower Jurassic clastic rocks in the southeastern margin of the South China Block. Detrital zircon U–Pb ages are mainly classified into age groups of 2000–1700, 900–700, 490–390 and 280–210 Ma, consistent with derivation from the Jiangnan orogenic belt, Nanling Belt, as well as Wuyi and Yunkai domains. Lower Jurassic samples yield a special main age population of 200–190 Ma, and these detrital zircon grains have low Th/U and Nb/Hf ratios and high Th/Nb and Hf/Th ratios, showing they are derived from a continental magmatic arc. However, the cross-correlation and likeness coefficients of kernel density estimates of Upper Triassic and Lower Jurassic sandstones are 0.8608 and 0.8403, indicating that their populations are highly similar. Since the tectonic setting is the key factor in controlling the relationship between source and sink, the stable supply of identical provenance suggests that the tectonic setting did not significantly change during Late Triassic – Early Jurassic time. Sandstone petrography, regional facies distribution and the detrital zircon age patterns all reflect a consistent tectonic setting for the South China Block during Late Triassic – Early Jurassic time. The Palaeo-Pacific subduction therefore did not control the tectonic evolution of the South China Block until after the Early Jurassic Epoch.
Previously reported wearable systems for people with Parkinson’s disease (PD) have been focused on the detection of abnormal gait. They suffered from limited accuracy, large latency, poor durability, comfort, and convenience for daily use. Herewith we report an intelligent wearable system (IWS) that can accurately detect abnormal gait in real-time and provide timely cueing for PD patients. The system features novel sensitive, comfortable and durable plantar pressure sensing insoles with a highly compressed data set, an accurate and fast gait algorithm, and wirelessly controlled timely sensory cueing devices. A total of 29 PD patients participated in the first phase without cueing for developing processes of the algorithm, which achieved an accuracy of over 97% for off-line detection of freezing of gait (FoG). In the second phase with cueing, the evaluation of the whole system was conducted with 16 PD subjects via trial and a questionnaire survey. This system demonstrated an accuracy of 94% for real-time detection of FoG and a mean latency of 0.37 s between the onset of FoG and cueing activation. In questionnaire survey, 88% of the PD participants confirmed that this wearable system could effectively enhance walking, 81% thought that the system was comfortable and convenient, and 70% overcame the FoG. Therefore, the IWS makes it an effective, powerful, and convenient tool for enhancing the mobility of people with PD.
High-Mg andesites (HMAs) are crucial for the reconstruction of plate tectonics, continental margin formation and lithospheric evolution. In this study, we present new fossil age, whole-rock geochemical and Sr–Nd isotope data on the newly discovered Dundunshan Group HMAs in the Dundunshan area of the Beishan orogen (central-southern Central Asian Orogenic Belt). The Dundunshan HMA samples are characterized by high MgO (6.47–7.02 wt%) contents and high Mg# values (67.27–68.77), with SiO2 (58.57–62.13 wt%), Al2O3 (14.49–16.07 wt%) and CaO (5.05–6.24 wt%) resembling typical HMAs. The Dundunshan HMA samples are calc-alkaline and strongly enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs), with slightly negative Eu anomaly and high-field-strength element (HFSE) depletions. Their (87Sr/86Sr)i ratios (0.7041–0.7057) and ϵNd(t) (3.73–5.59) indicate that the Dundunshan HMAs were mainly formed by the interactions between subducted oceanic sediment-derived melts and mantle peridotites. Fossil evidence and published radiometric age data constrain the formation of the Dundunshan HMAs to early Late Devonian time. Sedimentological features of the Middle Devonian Sangejing Formation and regional tectonic correlation suggest that the Hongliuhe–Niujuanzi–Xichangjing Ocean in the Dundunshan area was likely closed during late Middle Devonian time, and that the Dundunshan HMAs were formed in a post-collision extensional setting.
Laser–plasma accelerators (LPAs) have great potential to realize a compact X-ray free-electron laser (FEL), which is limited by the beam properties currently. Two-color high-intensity X-ray FEL provides a powerful tool for probing ultrafast dynamic systems. In this paper, we present a simple and feasible method to generate a two-color X-ray FEL pulse based on an LPA beam. In this scheme, time-dependent mismatch along the bunch is generated and manipulated by the designed lattice system, enabling FEL lasing at different wavelength within two undulator sections. The time separation between the two pulses can be precisely adjusted by varying the time-delay chicane. Numerical simulations show that two-color soft X-ray FELs with gigawatt-level peak power and femtosecond duration can be generated, which confirm the validity and feasibility of the scheme.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to
$\sim\!5$
yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of
$\sim\!162$
h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of
$0.24\ \mathrm{mJy\ beam}^{-1}$
and angular resolution of
$12-20$
arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
General nonlinear equations describing reversed shear Alfvén eigenmode (RSAE) self-modulation via zero-frequency zonal structure (ZFZS) generation are derived using nonlinear gyrokinetic theory, which are then applied to study the spontaneous ZFZS excitation as well as RSAE nonlinear saturation. It is found that both electrostatic zonal flow and electromagnetic zonal current can be preferentially excited by finite-amplitude RSAE, depending on specific plasma parameters. The modification to local shear Alfvén wave continuum is evaluated using the derived saturation level of zonal current, which is shown to play a comparable role in saturating RSAE with the ZFZS scattering.
Ebselen is a well-known synthetic compound mimicking glutathione peroxidase (GPx), which catalyses some vital reactions that protect against oxidative damage. Based on a large number of in vivo and in vitro studies, various mechanisms have been proposed to explain its actions on multiple targets. It targets thiol-related compounds, including cysteine, glutathione, and thiol proteins (e.g., thioredoxin and thioredoxin reductase). Owing to this, ebselen is a unique multifunctional agent with important effects on inflammation, apoptosis, oxidative stress, cell differentiation, immune regulation and neurodegenerative disease, with anti-microbial, detoxifying and anti-tumour activity. This review summarises the current understanding of the multiple biological processes and molecules targeted by ebselen, and its pharmacological applications.