We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Primates are bred in captivity for a number of purposes, from zoo-based captive breeding programmes for conservation to breeding for biomedical research. In each case, breeding animals that are fit for purpose, either as viable candidates for reintroduction or as valid research models, has presented challenges and resulted in steep learning curves. The breeding of animals for biomedical research has become increasingly focused on the production of animals that are less stressed by captive (specifically laboratory) environments. This is because elevated, particularly chronic, stress responses can result in altered physiological, neurological and behavioural states that have the potential to compromise the validity of scientific results. Selective breeding in captivity to, for example, maximise production, select for docile temperament or specific genotypes for biomedical research, is likely to be counter to natural selective pressures for evolutionary fitness. Given that many natural selective pressures active in the wild are absent in captivity, this paper reviews the selective breeding of primates (especially Old World monkeys) in captivity, its potential negative effects, and options that exist for ameliorating these negative effects.
We present the most sensitive and detailed view of the neutral hydrogen (
${\rm H\small I}$
) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal
${\rm H\small I}$
in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K (
$1.6\,\mathrm{mJy\ beam}^{-1}$
)
$\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$
spectral channel with an angular resolution of
$30^{\prime\prime}$
(
${\sim}10\,\mathrm{pc}$
). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire
${\sim}25\,\mathrm{deg}^2$
field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes
${\rm H\small I}$
test observations.
In this experimental study, multiscale rough surfaces with regular (cuboid) elements are used to examine the effects of roughness-scale hierarchy on turbulent boundary layers. Three iterations have been used with a first iteration of large-scale cuboids onto which subsequent smaller cuboids are uniformly added, with their size decreasing with a power-law as the number increases. The drag is directly measured through a floating-element drag balance, while particle image velocimetry allowed the assessment of the flow field. The drag measurements revealed the smallest roughness iteration can contribute to nearly 7 $\%$ of the overall drag of a full surface, while the intermediate iterations are responsible for over $12\,\%$ (at the highest Reynolds number tested). It is shown that the aerodynamic roughness length scale between subsequent iterations varies linearly, and can be described with a geometrical parameter proportional to the frontal solidity. Mean and turbulent statistics are evaluated using the drag information, and highlighted substantial changes within the canopy region as well as in the outer flow, with modifications to the inertial sublayer (ISL) and the wake region. These changes are shown to be caused by the presence of large-scale secondary motions in the cross-plane, which itself is believed to be a consequence of the largest multiscale roughness phase (spacing between largest cuboids), shown to be of the same order of magnitude as the boundary-layer thickness. Implications on the classical similarity laws are additionally discussed.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with
$\sim$
15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination
$+41^\circ$
made over a 288-MHz band centred at 887.5 MHz.
Many studies have shown that schizophrenic patients are noted to have deficits in the recognition and discrimination of facial emotions. in contrast, studies examining emotional sound perception are scarce.
Objective:
Evaluate emotional sound perception (pleasantness/unpleasantness) in schizophrenic patients in early stages of the disease.
Methods:
This study was performed on schizophrenic outpatients from the Psychiatry Departments of Hospital Santa Maria and Hospital Júlio de Matos, Lisbon. Sample group comprised 29 schizophrenic patients and 29 matched healthy controls, equal in sex and age. Evaluations included the Mini Mental State Examination; the Positive and Negative Syndrome Scale (PANSS); the Newcastle Battery of Pleasant and Unpleasant Sounds (NBPUS), which we developed to study this issue, and a visual scale of self-assessment of the emotional experience.
Results and discussion:
There was no statistical difference between groups. Results suggest that schizophrenic patients in early stages of the disease have a preserved emotional perception of sounds. No correlation was found between clinical severity measures (disease duration, PANSS total and sub scores) and mean unpleasantness/pleasantness rating, which may suggest that the emotional perception of sounds is rather stable during the first five years of illness.
Conclusion:
These results need further investigation on bigger samples studies. Future research in this area is important for the larger study of emotion and cognition.
A new fossil site in a previously unexplored part of western Madagascar (the Beanka Protected Area) has yielded remains of many recently extinct vertebrates, including giant lemurs (Babakotia radofilai, Palaeopropithecus kelyus, Pachylemur sp., and Archaeolemur edwardsi), carnivores (Cryptoprocta spelea), the aardvark-like Plesiorycteropus sp., and giant ground cuckoos (Coua). Many of these represent considerable range extensions. Extant species that were extirpated from the region (e.g., Prolemur simus) are also present. Calibrated radiocarbon ages for 10 bones from extinct primates span the last three millennia. The largely undisturbed taphonomy of bone deposits supports the interpretation that many specimens fell in from a rock ledge above the entrance. Some primates and other mammals may have been prey items of avian predators, but human predation is also evident. Strontium isotope ratios (87Sr/86Sr) suggest that fossils were local to the area. Pottery sherds and bones of extinct and extant vertebrates with cut and chop marks indicate human activity in previous centuries. Scarcity of charcoal and human artifacts suggests only occasional visitation to the site by humans. The fossil assemblage from this site is unusual in that, while it contains many sloth lemurs, it lacks ratites, hippopotami, and crocodiles typical of nearly all other Holocene subfossil sites on Madagascar.
SNP in the vitamin D receptor (VDR) gene is associated with risk of lower respiratory infections. The influence of genetic variation in the vitamin D pathway resulting in susceptibility to upper respiratory infections (URI) has not been investigated. We evaluated the influence of thirty-three SNP in eleven vitamin D pathway genes (DBP, DHCR7, RXRA, CYP2R1, CYP27B1, CYP24A1, CYP3A4, CYP27A1, LRP2, CUBN and VDR) resulting in URI risk in 725 adults in London, UK, using an additive model with adjustment for potential confounders and correction for multiple comparisons. Significant associations in this cohort were investigated in a validation cohort of 737 children in Manchester, UK. In all, three SNP in VDR (rs4334089, rs11568820 and rs7970314) and one SNP in CYP3A4 (rs2740574) were associated with risk of URI in the discovery cohort after adjusting for potential confounders and correcting for multiple comparisons (adjusted incidence rate ratio per additional minor allele ≥1·15, Pfor trend ≤0·030). This association was replicated for rs4334089 in the validation cohort (Pfor trend=0·048) but not for rs11568820, rs7970314 or rs2740574. Carriage of the minor allele of the rs4334089 SNP in VDR was associated with increased susceptibility to URI in children and adult cohorts in the United Kingdom.
The conservation of threatened species requires information on how management activities influence habitat quality. The Critically Endangered black rhinoceros Diceros bicornis is restricted to savannahs representing c. 5% of its historical range. Fire is used extensively in savannahs but little is known about how rhinos respond to burning. Our aim was to understand rhino responses to fire by studying habitat selection and foraging at multiple scales. We used resource selection functions and locations of 31 rhinos during 2014–2016 to study rhino habitat use in Serengeti National Park, Tanzania. Rhino selectivity was quantified by comparing forage consumption to plant species availability in randomly sampled vegetation plots; rhino diets were subsequently verified through DNA metabarcoding analysis of faecal samples. Rhino habitat use was a unimodal function of fire history, with highly occupied sites having fire frequencies of < 0.6 fires/year and maximum occupancy occurring at a fire frequency of 0.1 fires/year. Foraging stations had characteristic plant communities, with 17 species associated with rhino foraging. Rhinos were associated with, and disproportionately consumed, woody plants, forbs and legumes, all of which decreased in abundance with increasing fire frequency. In contrast to common management practices, multiple lines of evidence suggest that the current fire regime in the Serengeti negatively influences rhino habitat use and foraging and that frequent fire limits access of rhinos to preferred forage. We outline a conceptual model to guide managers and conservationists in the use of fire under variable habitat conditions.
The number of people entering specialist drug treatment for cannabis problems has increased considerably in recent years. The reasons for this are unclear, but rising cannabis potency could be a contributing factor.
Methods
Cannabis potency data were obtained from an ongoing monitoring programme in the Netherlands. We analysed concentrations of δ-9-tetrahydrocannabinol (THC) from the most popular variety of domestic herbal cannabis sold in each retail outlet (2000–2015). Mixed effects linear regression models examined time-dependent associations between THC and first-time cannabis admissions to specialist drug treatment. Candidate time lags were 0–10 years, based on normative European drug treatment data.
Results
THC increased from a mean (95% CI) of 8.62 (7.97–9.27) to 20.38 (19.09–21.67) from 2000 to 2004 and then decreased to 15.31 (14.24–16.38) in 2015. First-time cannabis admissions (per 100 000 inhabitants) rose from 7.08 to 26.36 from 2000 to 2010, and then decreased to 19.82 in 2015. THC was positively associated with treatment entry at lags of 0–9 years, with the strongest association at 5 years, b = 0.370 (0.317–0.424), p < 0.0001. After adjusting for age, sex and non-cannabis drug treatment admissions, these positive associations were attenuated but remained statistically significant at lags of 5–7 years and were again strongest at 5 years, b = 0.082 (0.052–0.111), p < 0.0001.
Conclusions
In this 16-year observational study, we found positive time-dependent associations between changes in cannabis potency and first-time cannabis admissions to drug treatment. These associations are biologically plausible, but their strength after adjustment suggests that other factors are also important.
This study evaluates the morbidity, mortality, and cost differences between patients who underwent either a simple or a complex arterial switch operation.
Methods
A retrospective study of patients undergoing an arterial switch operation at a single institution was performed. Simple cases were defined as patients with d-transposition of the great arteries with usual coronary anatomy or circumflex artery originating from the right with either intact ventricular septum or ventricular septal defect. Complex cases included all other forms of coronary anatomy, aortic coarctation or arch hypoplasia, and Taussig–Bing anomalies. Costs were acquired using an institutional activity-based accounting system.
Results
A total of 98 patients were identified, 68 patients in the simple group and 30 in the complex group. The mortality rate was 2% for the simple and 7% for the complex group, p=0.23. Major morbidities including cardiac arrest, extracorporeal membrane oxygenation, a major coronary event, surgical or catheter-based re-intervention, stroke, or permanent pacemaker placement, non-cardiac surgical procedures, mediastinitis, and sepsis did not differ between the simple and complex groups (16 versus 27%, p=0.16). The complex group had increased bleeding requiring re-exploration (0 versus 10%, p=0.04). Hospital and ICU length of stay did not differ. Complex patients had higher overall hospital costs (simple $80,749 versus complex $97,387, p=0.01) and higher postoperative costs (simple $60,192 versus complex $70,132, p=0.02). The operating room and supplies accounted for the majority of the cost difference.
Conclusion
Complex arterial switches can be safely performed with low rates of morbidity and mortality but at an increased cost.
Field experiments were conducted in 1999 and 2000 to determine if (1) seed predation of redroot pigweed plants occurred in agricultural fields, (2) corn-cropping patterns could be manipulated to influence the quantity of weed seed predation, and (3) alterations in corn canopies affected the microenvironment, possibly influencing predator populations. Corn was planted in standard (75 cm) or narrow (37.5 cm) rows with corn population densities ranging from low to very high (2.5 to 10 plants m−2). The extent of seed predation occurring on terminal weed inflorescences in the treatments was evaluated. Predation levels of redroot pigweed were highly variable spatially and temporally. Coleophora lineapulvella Chambers (Lepidoptera: Coleophoridae) was the dominant predator of redroot pigweed seed. Seed predation was higher in 2000 than in 1999 (P < 0.05). On average, C. lineapulvella larvae attacked 11% of the inflorescences in 2000 and 3% of inflorescences in 1999. The proportion of damaged seeds per attacked inflorescence was as high as 93% in 2000 but only 42% in 1999. Row spacing and corn density did not affect levels of weed seed predation (P > 0.05). But canopies of closely spaced corn increased shading to redroot pigweed plants growing below the canopy, consequently decreasing total weed biomass and seed production.
Evaluation of turfgrass performance at low nitrogen fertility levels is important because many home lawns are fertilized below common recommendations. The objective of this study was to evaluate visible quality and weed susceptibility of common and alternative cool season grasses under multiple management regimes in Wisconsin. A split-split plot completely randomized block design was used to evaluate ‘Kingfisher' Kentucky bluegrass (Kentucky bluegrass), ‘Kenblue' Kentucky bluegrass, ‘Victory II' chewings fescue, ‘Grande II' tall fescue, and ‘Jiffe II' perennial ryegrass. Each species was mowed at 3.5, 6.0, or 8.5 cm, and fertilized with 0, 98, or 196 kg ha−1 yr−1 of nitrogen. Visible quality and weed cover were evaluated four times annually for 3 yr. Tall fescue had the greatest turf quality across all treatments. Kingfisher Kentucky bluegrass, an improved variety, responded most dramatically to nitrogen fertilization, with quality rating improved from 5.1 to 7.1 when annual nitrogen applications totaled 196 kg ha−1 compared to the nonfertilized control. Kenblue Kentucky bluegrass, a common variety, had the greatest weed cover at all mowing heights and fertilizer rates. Assessment of common dandelion flowers by digital image analysis revealed that improved and common Kentucky bluegrass had greater common dandelion cover than fine or tall fescue when herbicides were withheld for 2.5 yr. Background soil fertility was found to have a significant impact on visible quality and weed cover. In an area with eroded, low-fertility soil, improved Kentucky bluegrass required 196 kg N ha−1 yr−1 to maintain high quality and limit weed invasion. These results suggest that tall fescue is best suited to low and high input conditions, while improved varieties of Kentucky bluegrass performed acceptably only under high inputs.
We describe the performance of the Boolardy Engineering Test Array, the prototype for the Australian Square Kilometre Array Pathfinder telescope. Boolardy Engineering Test Array is the first aperture synthesis radio telescope to use phased array feed technology, giving it the ability to electronically form up to nine dual-polarisation beams. We report the methods developed for forming and measuring the beams, and the adaptations that have been made to the traditional calibration and imaging procedures in order to allow BETA to function as a multi-beam aperture synthesis telescope. We describe the commissioning of the instrument and present details of Boolardy Engineering Test Array’s performance: sensitivity, beam characteristics, polarimetric properties, and image quality. We summarise the astronomical science that it has produced and draw lessons from operating Boolardy Engineering Test Array that will be relevant to the commissioning and operation of the final Australian Square Kilometre Array Path telescope.
This study tested whether accurate dating by accelerator mass spectrometry (AMS) radiocarbon wiggle-matching of short tree-ring series (~30 annual rings) in the Medieval period could be achieved. Scientific dating plays a central role in the conservation of historic buildings in England. Precise dating helps assess the significance of particular buildings or elements of their fabric, thus allowing us to make informed decisions about their repair and protection. Consequently, considerable weight, both financial and legal, can be attached to the precision and accuracy of this dating. Dendrochronology is the method of choice, but in a proportion of cases this is unable to provide calendar dates. Hence, we would like to be able to use 14C wiggle-matching to provide a comparable level of precision and reliability, particularly on shorter tree-ring sequences (~30 annual growth rings) that up until now would not routinely be sampled. We present the results of AMS wiggle-matching five oak tree-ring sequences, spanning the period covered by the vast majority of surviving Medieval buildings in England (about AD 1180–1540) when currently we have only decadal and bidecadal calibration data.
The present energy situation has caused engineers to look more closely at methods of energy recovery which have previously received only limited attention due to the availability of cheap and plentiful fossil fuels. One of these methods is the use of an airscrew, or windmill, to convert wind energy into mechanical energy. There are a number of disadvantages in the utilisation of wind energy: the power available is relatively low for the size of plant involved and the supply is intermittent, but on the other hand the energy is free and available in most areas.
The economic feasibility of using windmills on a scale large enough to supply the national grid system is debatable, but there is certainly a demand for small units suitable for the individual domestic consumer.
Boundary layer measurements have been made at four positions on a slender gothic wing of aspect ratio 0·75. Test's were made over a range of incidence at M=1·42 and 1·82. With transition fixed by roughness near the leading edge the boundary layer thickness varied little with small positive or negative incidence but was reduced at larger incidences, this being most marked at positive incidence for positions nearest the leading edge due to the influence of the wing vortex. With the exception of positions in the vicinity of the vortex, a good estimate of the boundary layer thickness was given by the theory for incompressible flow over a flat plate and an excellent estimate of the variation of local static pressure and Mach number with incidence was given by not-so-slender wing theory.
When a rotating body is placed in a stream of fluid the viscous drag of the rotating surface moving forward on one side and backwards on the other causes the flow velocity to be lower and hence the pressure on the forward-moving side higher than on the backward-moving side, thus giving a lateral (lift) force L in the direction shown in Fig. 1. This force, known as the Magnus force, is well known to engineers and also to sportsmen. In tennis, for example, top spin is used to swerve a fast ball downwards so that it falls within the required area of play, while in golf the Magnus force causes the all too familiar sliced shot when the club is drawn across the ball at impact.
During 1990 we surveyed the southern sky using a multi-beam receiver at frequencies of 4850 and 843 MHz. The half-power beamwidths were 4 and 25 arcmin respectively. The finished surveys cover the declination range between +10 and −90 degrees declination, essentially complete in right ascension, an area of 7.30 steradians. Preliminary analysis of the 4850 MHz data indicates that we will achieve a five sigma flux density limit of about 30 mJy. We estimate that we will find between 80 000 and 90 000 new sources above this limit. This is a revised version of the paper presented at the Regional Meeting by the first four authors; the surveys now have been completed.
It is now a matter of history that the development of an efficient gas turbine for use in aircraft engines had to await the availability of materials with the properties which would give an adequate life under the conditions which have to be imposed for efficient and economic service. These conditions are, of their type, more severe than any so far imposed on materials in other mechanical equipment. For efficient operation the gases employed in the turbine must be at a high temperature and the flow of gas passing through must be large. In aircraft engines also, the turbine must operate at high speed, with the resulting accompaniment of high stresses. It was to the metallurgist that the engineer naturally turned first for materials to meet these conditions of high temperatures and high stresses and, although some attention has been given to non-metallic substances, the problem still remains essentially a metallurgical one.