We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An attempt has been made to synthesize nitrogenous clay minerals hydrothermally from silica-alumina gels in the presence of amino acids, namely glycine and lysine. The products have been characterized by X-ray powder diffraction, by analyses for C and N contents, and by their infrared spectra.
Amino acid-montmorillonites have been prepared under hydrothermal conditions of 200–250°C and 1000 atm. Above 250°C the amino acids were degraded to ammonium ions, and ammonium-micas were obtained. Syntheses without the addition of amino acids to gels yielded kaolinite.
The role of organic compounds in the formation of clay minerals seems to be of considerable geochemical significance.
The initial flow past an impulsively started rotating and translating circular cylinder is asymptotically analysed using a Brinkman penalization method on the Navier–Stokes equation. In our previous study (J. Fluid Mech., vol. 929, 2021, A31), the asymptotic solution was obtained within the second approximation with respect to the small parameter, $\epsilon$, that is of the order of $1 / \lambda$. Here, $\lambda$ is the penalization parameter. In addition, the Reynolds number based on the cylinder radius and the translating velocity is assumed to be of the order of $\epsilon$. The previous study asymptotically analysed the initial flow past an impulsively started translating circular cylinder and investigated the influence of the penalization parameter $\lambda$ on the drag coefficient. It was concluded that the drag coefficient calculated from the integration of the penalization term exhibits a half-value of the results of Bar-Lev & Yang (J. Fluid Mech., vol. 72, 1975, pp. 625–647) as $\lambda \to \infty$. Furthermore, the derivative of vorticity in the normal direction was found to be discontinuous on the cylinder surface, which is caused by the tangential gradient of the pressure on the cylinder surface. The present study hence aims to investigate the variance on the drag coefficient against the result of Bar-Lev & Yang (1975). First, we investigate the problem of an impulsively started rotating circular cylinder. In this situation, the moment coefficient is independent of the pressure on the cylinder surface so that we can elucidate the role of the pressure to the hydrodynamic coefficients. Then, the problem of an impulsively started rotating and translating circular cylinder is investigated. In this situation, the pressure force induced by the unsteady flow far from the cylinder is found to play a key role on the drag force for the agreement with the result of Bar-Lev & Yang (1975), whereas the variance still exists on the lift force. To resolve the variance, an alternative formula to calculate the hydrodynamic force is derived, assuming that there is the pressure jump between the outside and inside of the cylinder surface. The pressure jump is obtained in this analysis asymptotically. Of particular interest is the fact that this pressure jump can cause the variance on the lift force calculated by the integration of the penalization term.
For low-grade intraepithelial neoplasia cases, pharyngolaryngeal lesions equal to or less than 5 mm in size do not generally progress to invasive carcinoma. However, micro-superficial lesions equal to or less than 5 mm that showed rapid growth have been recently encountered. This study aimed to identify the characteristics of preferential progression of lesions equal to or less than 5 mm in size.
Method
Gross findings, endoscopic findings and pathological results of 55 lesions measuring equal to or less than 5 mm in diameter were retrospectively reviewed to identify factors that distinguish squamous cell carcinoma or high-grade intraepithelial neoplasia from low-grade intraepithelial neoplasia or non-atypia lesions.
Results
The overall sensitivity, specificity, accuracy, and positive and negative predictive value of background colouration and intrapapillary capillary loop pattern in differentiation of squamous cell carcinoma or high-grade intraepithelial neoplasia from low-grade intraepithelial neoplasia or non-atypia lesions were all 100 per cent.
Conclusion
Diagnosis based on background colouration and the intrapapillary capillary loop pattern on narrow-band imaging facilitates the pathological examination of lesions measuring equal to or less than 5 mm.
The initial flow past an impulsively started translating circular cylinder is asymptotically analysed using a Brinkman penalization method on the Navier–Stokes equations. The asymptotic solution obtained shows that the tangential and normal slip velocities on the cylinder surface are of the order of $1/\sqrt {\lambda }$ and $1/\lambda$, respectively, within the second approximation of the present asymptotic analysis, where $\lambda$ is the penalization parameter. This result agrees with the estimation of Carbou & Fabrie (Adv. Diff. Equ., vol. 8, 2003, pp. 1453–1480). Based on the asymptotic solution, the influence of the penalization parameter $\lambda$ is discussed on the drag coefficient that is calculated using the adopted three formulae. It can then be found that the drag coefficient calculated from the integration of the penalization term exhibits a half-value of the results of Bar-Lev & Yang (J. Fluid Mech., vol. 72, 1975, pp. 625–647) as $\lambda \to \infty$.
Severe acute respiratory syndrome coronavirus-2 uses angiotensin-converting enzyme-2 as a primary receptor for invasion. This study investigated angiotensin-converting enzyme-2 expression in the sinonasal mucosa of patients with chronic rhinosinusitis, as this could be linked to a susceptibility to severe acute respiratory syndrome coronavirus-2 infection.
Methods
Ethmoid sinus specimens were obtained from 27 patients with eosinophilic chronic rhinosinusitis, 18 with non-eosinophilic chronic rhinosinusitis and 18 controls. The angiotensin-converting enzyme-2 and other inflammatory cytokine and chemokine messenger RNA levels were assessed by quantitative reverse transcription polymerase chain reaction. Angiotensin-converting enzyme-2 positive cells were examined immunohistologically.
Results
The eosinophilic chronic rhinosinusitis patients showed a significant decrease in angiotensin-converting enzyme-2 messenger RNA expression. In the chronic rhinosinusitis patients, angiotensin-converting enzyme-2 messenger RNA levels were positively correlated with tumour necrosis factor-α and interleukin-1β (r = 0.4971 and r = 0.3082, respectively), and negatively correlated with eotaxin-3 (r = −0.2938). Angiotensin-converting enzyme-2 immunoreactivity was mainly localised in the ciliated epithelial cells.
Conclusion
Eosinophilic chronic rhinosinusitis patients with type 2 inflammation showed decreased angiotensin-converting enzyme-2 expression in their sinus mucosa. Angiotensin-converting enzyme-2 regulation was positively related to pro-inflammatory cytokines, especially tumour necrosis factor-α production, in chronic rhinosinusitis patients.
Pilots are sometimes not provided with sufficient information to avoid go-arounds or other operational disruptions that result from low-level wind disturbances. We identified issues with existing windshear alerting systems and developed three types of airport low-level wind information systems to enhance pilot situational awareness of wind conditions by providing landing aircraft with quantitative and visualised wind information for ultimately mitigating air service disruptions due to low-level wind disturbances. The three systems, Airport Low-level Wind Information (ALWIN) and Low-level Turbulence Advisory System (LOTAS), both of which use Doppler radar/lidar, and Sodar-based Low-level Wind Information (SOLWIN), which uses Doppler SOnic Detection And Ranging (SODAR), have different costs and capabilities that allow the most cost-effective system to be selected for an airport according to its scale and local weather characteristics. This paper presents the operational concepts of our newly developed airport low-level wind information systems and describes their validation.
Cognitive deficits as well as affective and physical symptoms are common after traumatic brain injury (TBI). However, little is known about how these deficits affect functional outcomes. The purpose of this study was to investigate the relationship between neuropsychological, affective and physical sequelae and outcomes such as social function and quality of life in patients with TBI. We studied these relationships in 57 patients with TBI over the course of 6 months post-injury. The patients completed neuropsychological assessments, including the Wechsler Adult Intelligence Scale-III, the Rivermead Behavioural Memory Test, and verbal fluency test. Affective and physical symptoms were assessed by beck depression inventory-II, Chalder fatigue scale, and Pittsburgh sleep quality index. Functional outcomes were assessed using the world health organization (WHO) disability assessment rated by others and the WHO quality of life assessment (WHO/QOL 26). The patients showed impairments in executive function assessed by verbal fluency test. The affective and physical assessments showed mild depressive mood and fatigue problem. Multiple regression analysis revealed that executive function and depressive mood were the best predictors of social function and quality of life, respectively. The findings of this study suggest that executive function and depressive mood are important factors to predict functional outcomes in patients with TBI.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
Optical properties of infrared-bright (IR-bright) dust-obscured galaxies (DOGs) are reported. DOGs are faint in optical but very bright in mid-IR, which are powered by active star formation (SF) or active galactic nucleus (AGN), or both. The DOGs is a candidate population that are evolving from a gas-rich merger to a quasar. By combining three catalogs of optical (Subaru Hyper Suprime-Cam), near-IR (VIKING), and mid-IR (ALLWISE), we have discovered 571 IR-bright DOGs. Using their spectral energy distributions, we classified the selected DOGs into the SF-dominated DOGs and the AGN-dominated DOGs. We found that the SF-dominated DOGs show a redder optical color than the AGN-dominated DOGs. Interestingly, some DOGs shows extremely blue color in optical (blue-excess DOGs: bluDOGs). A possible origin for this blue excess is either the leaked AGN light or stellar UV light from nuclear starbursts. The BluDOGs may be in the transition phase from obscured AGNs to unobscured AGNs.
The ALMA twenty-six arcmin2 survey of GOODS-S at one millimeter (ASAGAO) is a deep (1σ ∼ 61μJy/beam) and wide area (26 arcmin2) survey on a contiguous field at 1.2 mm. By combining with archival data, we obtained a deeper map in the same region (1σ ∼ 30μJy/beam−1, synthesized beam size 0.59″ × 0.53″), providing the largest sample of sources (25 sources at 5σ, 45 sources at 4.5σ) among ALMA blank-field surveys. The median redshift of the 4.5σ sources is 2.4. The number counts shows that 52% of the extragalactic background light at 1.2 mm is resolved into discrete sources. We create IR luminosity functions (LFs) at z = 1–3, and constrain the faintest luminosity of the LF at 2 < z < 3. The LFs are consistent with previous results based on other ALMA and SCUBA-2 observations, which suggests a positive luminosity evolution and negative density evolution.
After completion of the drilling by the US Army Cold Regions Research and Engineering Laboratory (USA-CRREL) at Camp Century, Greenland, in July 1966, the operation was moved to Byrd Station, Antarctica, during the 1966/67 austral summer. The drill employed was an electromechanical cable-suspended drill that used ethylene glycol to dissolve the chips formed, producing a core with an average diameter of 114 mm. A mixture of diesel oil and trichlorethylene was used as a borehole fluid. Ice-core drilling at Byrd Station occurred from 2 to 18 February 1967 and from 12 October 1967 to 2 February 1968 when the ice sheet was penetrated at a depth of 2164 m. During the ensuing 1968/69 season the drill was lost, and ultimately the cable was severed in early 1969/70 at a depth of 1545 m. This brief report reviews the drilling operation and some of the problems encountered primarily during the 1967/68 season, with a focus on the last few days of drilling.
The USA CRREL drill is an 80-kg, electrothermal unit designed for continuous coring in temperate or polar ice or snow. The drill melts a hole approximately 16.3 cm in diameter and retrieves a core approximately 12.2 cm in diameter at rates from 1.9 m h−1 in −28°C ice to 2.3 m h−1 in temperate ice. The melt water formed is removed by a vacuum system and stored in a tank. Additional equipment includes 450 m of armored electrical cable, a hoist, a 6.7-m tower and a gasoline generator. The minimum time required to drill a 450-m hole is 435 h. All of the equipment has been designed to be assembled and operated by two men and has a gross shipping weight of 1180 kg.
The drill hole at “Byrd” station, which was completed in January 1968 to a vertical gerpth of 7 063 ft (2 153 m) below the top of the hole casing, was resurveyed in January 1975 to a vertical gerpth of 4 835 ft (1 474 m)· Inclination and azimuth measurements were mager with a Parsons multiple shoe inclinometer and compared with the earlier measurements mager during drilling. The results indicate a progressively increasing displacement with gerpth to a value of 51.2 ft (15.6 m) or about 7.3 ft/year (2.23 m/year) at the 4 835 ft (1 474 m) level. The direction of movement relative to the surface varies freom south-west at 300 ft (91.5 m) to north-east at 1 100 ft (335 m) to east at 3 368 ft (1 027 m) to north-east at 4835 ft (l 474 m), indicative of a complex twisting motion. An increase in accessible gerpth along the hole axis of 18 ft (549 m) beyond the 1969 gerpth was noted. No attempt was mager to measure hole diameter or vertical strain. It is recommengerd that the hole be resurveyed in 3-5 years if it is still logistically feasible, using a more up-dated inclinometer.
Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging has been used to detect alterations in the composition of inner-ear fluid. This study investigated the association between hearing level and the signal intensity of pre- and post-contrast three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging in patients with sudden-onset sensorineural hearing loss.
Method:
Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging was performed in 18 patients with sudden-onset sensorineural hearing loss: 12 patients with mild-to-moderate sensorineural hearing loss (baseline hearing levels of 60 dB or less) and 6 patients with severe-to-profound sensorineural hearing loss (baseline hearing levels of more than 60 dB).
Results:
High-intensity signals in the inner ear were observed in two of the six patients (33 per cent) with severe-to-profound sensorineural hearing loss, but not in those with mild-to-moderate sensorineural hearing loss (mid-p test, p = 0.049). These signals were observed on magnetic resonance imaging scans 6 or 18 days after sensorineural hearing loss onset.
Conclusion:
The results indicate that three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging is not a useful tool for detecting inner-ear abnormalities in patients with mild sensorineural hearing loss.
The long-time viscous flow about two identical rotating circular cylinders in a side-by-side arrangement is investigated using an adaptive numerical scheme based on the vortex method. The Stokes solution of the steady flow about the two-cylinder cluster produces a uniform stream in the far field, which is the so-called Jeffery’s paradox. The present work first addresses the validation of the vortex method for a low-Reynolds-number computation. The unsteady flow past an abruptly started purely rotating circular cylinder is therefore computed and compared with an exact solution to the Navier–Stokes equations. The steady state is then found to be obtained for $t\gg 1$ with ${\mathit{Re}}_{\omega } {r}^{2} \ll t$, where the characteristic length and velocity are respectively normalized with the radius ${a}_{1} $ of the circular cylinder and the circumferential velocity ${\Omega }_{1} {a}_{1} $. Then, the influence of the Reynolds number ${\mathit{Re}}_{\omega } = { a}_{1}^{2} {\Omega }_{1} / \nu $ about the two-cylinder cluster is investigated in the range $0. 125\leqslant {\mathit{Re}}_{\omega } \leqslant 40$. The convection influence forms a pair of circulations (called self-induced closed streamlines) ahead of the cylinders to alter the symmetry of the streamline whereas the low-Reynolds-number computation (${\mathit{Re}}_{\omega } = 0. 125$) reaches the steady regime in a proper inner domain. The self-induced closed streamline is formed at far field due to the boundary condition being zero at infinity. When the two-cylinder cluster is immersed in a uniform flow, which is equivalent to Jeffery’s solution, the streamline behaves like excellent Jeffery’s flow at ${\mathit{Re}}_{\omega } = 1. 25$ (although the drag force is almost zero). On the other hand, the influence of the gap spacing between the cylinders is also investigated and it is shown that there are two kinds of flow regimes including Jeffery’s flow. At a proper distance from the cylinders, the self-induced far-field velocity, which is almost equivalent to Jeffery’s solution, is successfully observed in a two-cylinder arrangement.
We explore the relationships between the 3.3 μm polycyclic aromatic hydrocarbon (PAH) feature and active galactic nucleus (AGN) properties of a sample of 54 hard X-ray selected bright AGNs, including both Seyfert 1 and Seyfert 2 type objects, using the InfraRed Camera (IRC) on board the infrared astronomical satellite AKARI. The sample is selected from the 9-month Swift/BAT survey in the 14-195 keV band and all of them have measured X-ray spectra at E ≲ 10 keV. These X-ray spectra provide measurements of the neutral hydrogen column density (NH) towards the AGNs. We use the 3.3 μm PAH luminosity (L3.3μm) as a proxy for star formation activity and hard X-ray luminosity (L14-195keV) as an indicator of the AGN activity. We searched for possible difference of star-formation activity between type 1 (un-absorbed) and type 2 (absorbed) AGNs. Our regression analysis of log L14-195keV versus log L3.3μm shows a positive correlation and the slope seems steeper for type 1/unobscured AGNs than that of type 2/obscured AGNs. The same trend has been found for the log (L14-195keV/MBH) versus log (L3.3μm/MBH) correlation. Our analysis show that the circum-nuclear star-formation is more enhanced in type 2/absorbed AGNs than type 1/un-absorbed AGNs for low X-ray luminosity/low Eddington ratio AGNs.
We show that the dispersion in the Schmidt-Kennicutt (SK) law in galaxies is affected significantly by the evolutionary stage of star forming molecular gas, using narrow band Paα imaging of Taffy I, an interacting pair of galaxies. Star forming regions in the system show very uniform ages except for the bridge region, and the SK law of regions at the same age show a exceptionally tight SK law.
In order to enhance the safety of geological disposal and the reliability of the safety assessment carried out for each stage of the geological disposal project, an assessment methodology focused on a sensitivity analysis and an evaluation of importance, which incorporates “system understanding” and “information feedback” into the existing assessment approach, has been developed in this study. In this paper, the assessment methodology and the assessment results as applied for the transuranic (TRU) waste disposal system in Japan will be described. In the sensitivity analysis, an approximate analytical solution was used in order to understand the response characteristics of the engineered barrier system (EBS). In the importance evaluation, important factors relating to the robustness of system safety were identified based on the response characteristics. Furthermore, important features, events, and processes (FEPs) related to such factors and high-impact scenarios were identified based on the information accumulated through “system understanding” and “information feedback”. Based on this approach, the robustness of the TRU waste disposal system was assessed and measures for improving the robustness were identified.
The derailment accident occurred on 25 April 2005. 562 passengers were injured and 107 people died. Based on our periodic training in mass disaster triage, we accepted 113 wounded victims regardless of the severity of their condition. Initially, Simple Triage and Rapid Treatment was supposed to be performed by an emergency physician as a triage officer but START is not the most effective method for this case because patients of different severity levels were admitted to our hospital. Therefore, we performed triage by inspection and palpation based on our experience and intuition. Patient's facial color, breathing patterns, and trauma were processed for inspection. Furthermore, palpation was carried on without counting pulse and we diagnosed victims based upon strength of pulse and sensation of cold. From inspirational and sensuous diagnosis, the severity was determined. Comparing START with experiential and intuitive triage, differences between level of consciousness, the severity of trauma, and vital sign were examined. In addition, which components were necessary for primary survey was also reviewed.
Method
Severe or moderate, which were evaluated from ISS, vital sign, and Revised Trauma Score: RTS, Probability of survival: PS, were classified and then agreement rate, sensitivity, and specificity between START (S model) and triage (D model) were assessed. For START, data was extracted from clinical records.
Result
Agreement rate between the S model and the D model was 76.9%. Moreover, at the percentage of questions answered, the S model showed 84.2% and the D model showed 68.4%. Thus the experiment showed significant difference. 5 over triage cases appeared when the D model was operated. RTS, vital sign, and PS did not show great differences.
Conclusion
It could be difficult and insufficient to use START when a mass disaster occurs, however experiential and intuitive triage is also effective as START.