We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
Stéphane Viville, Laboratoire de Génétique Médicale de Strasbourg and Laboratoire de diagnostic génétique, Strasbourg,Karen D. Sermon, Reproduction and Genetics Research Group, Vrije Universiteit Brussel
The genetic causes of male infertility are highly heterogeneous, and a large portion of these causes remains unexplained. More than 2300 testes-specific genes may contribute to male infertility [1]. Primary testicular disorders affecting spermatogenesis are commonly associated with abnormal semen parameters, including sperm concentration (oligozoospermia or azoospermia), morphology, motility, and vitality. Studies in infertile men have demonstrated that up to 20% carry constitutional chromosome aberrations [2–5]. Genomic aberrations found in these patients include numerical abnormalities, such as Klinefelter syndrome and its variants; XYY karyotype; testicular disorders of sex development, such as XX males; structural chromosome rearrangements, including Robertsonian translocations, balanced reciprocal translocations and inversions; as well as submicroscopic DNA copy number alterations (microdeletions and microduplications) encompassing genes associated with spermatogenesis or gonadal development.
Edited by
Stéphane Viville, Laboratoire de Génétique Médicale de Strasbourg and Laboratoire de diagnostic génétique, Strasbourg,Karen D. Sermon, Reproduction and Genetics Research Group, Vrije Universiteit Brussel
Infertility is a genetically heterogeneous condition affecting about 10% of women of reproductive age. Genetic studies on animal models have identified thousands of candidate genes that are essential for gonadal development, germline cell differentiation, complex oocyte–granulosa intercellular signaling, gametogenesis, fertilization, and fetal development. A subset of these candidate genes derived from animal models has been found to cause ovarian dysfunction and infertility in humans.