We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An old theorem of Pólya and Carlson [2] states that, if the power series has rational integer coefficients, positive radius of convergence, and can be continued analytically to a region that contains points outside the closed unit disc, then the function that the power series represents is rational. This result has been extended in a number of ways (cf. e.g. Petersson [4]). The present note gives a new extension based on a recent theorem of Güting [3]. My thanks to Professors Henry Helson and Raphael Robinson for introducing me to this subject.
We consider infinite sequences of positive integers having exponential growth: and becoming ultimately periodic modulo each member of a rather sparse infinite set of integers. If sufficient, natural conditions are placed on the growth and periodicities of , we find that a is an algebraic integer having all its algebraic conjugates within or on the unit circle, and fn has a special representation involving an. The result is a kind of dual to the theorem of Pisot (cf. Salem [2], p. 4, Theorem A).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.