We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Antimicrobial resistance is a growing clinical and public health crisis. Experts have recommended measures to monitor antimicrobial resistance; however, little is known regarding their use.
Objective:
We describe the use of procedures to detect and report antimicrobial resistance in U.S. hospitals and the organizational and epidemiologic factors associated with their use.
Methods:
In 2001, we surveyed laboratory directors (n = 108) from a random national sample of hospitals. We studied five procedures to monitor antimicrobial resistance: (1) disseminating antibiograms to physicians at least annually, (2) notifying physicians of antimicrobial-resistant infections, (3) reporting susceptibility results within 24 hours, (4) using automated testing procedures, and (5) offering molecular typing. Explanatory variables included organizational characteristics and patterns of antimicrobial resistance for oxacillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, quinolone-resistant Escherichia coli, and extended-spectrum beta-lactamase-producing Klebsiella species. Generalized estimating equations accounting for the correlation among outcomes at the facility level were used to identify predictors of the five outcomes.
Results:
Use of the procedures ranged from 85% (automated testing) to 33% (offering molecular typing) and was related to teaching hospital status (OR, 3.1; CI95, 1.5–6.5), participation of laboratory directors on the infection control committee (OR, 1.7; CI95, 1.1–2.8), and having at least one antimicrobial-resistant pathogen with a prevalence greater than 10% (OR, 2.2; CI95, 1.4–3.3).
Conclusion:
U.S. hospitals underutilize procedures to monitor the spread of antimicrobial resistance. Use of these procedures varies and is related to organizational and epidemiologic factors. Further efforts are needed to increase their use by hospitals.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.