We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
New and groundbreaking therapeutic options for the critical care of patients with cerebrovascular disease have improved patient management, minimized morbidity, reduced in-patient care, improved quality of life, and had a positive economic impact on health service provision. This volume integrates these approaches and suggests the best therapy option for all cerebrovascular conditions. The early chapters of the book focus on monitoring techniques and interventions. Subsequent sections address the critical care of a wide range of cerebrovascular diseases: ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage, arteriovenous malformations, cerebral venous thrombosis and traumatic injury. The editors and authors are internationally recognized experts in their field, and the text is supplemented by tables and illustrations to demonstrate important clinical findings. This book will meet the needs of stroke physicians, neurologists, neurosurgeons, neurointensivists and interventional neuroradiologists seeking to maximize positive outcomes for their patients.
The advent of neuroimaging has allowed clinicians to improve clinico-anatomical correlations in stroke patients. Arterial trunks supplying the brainstem include: the vertebral artery, basilar artery, anterior and posterior spinal arteries, posterior inferior cerebellar artery, anterior inferior cerebellar artery, superior cerebellar artery, posterior cerebral artery, and anterior choroidal artery. The arterial supply of the medulla oblongata comes from the vertebral arteries that form the middle rami of the lateral medullary fossa, the posterior inferior cerebellar artery that gives rise to the inferior rami of the lateral medullary fossa, and the anterior and posterior spinal arteries. Different arterial trunks supply blood to the pons, including the vertebral arteries, anterior inferior cerebellar artery, superior cerebellar artery, and basilar artery. The leptomeningeal arteries consist of the terminal branches of the anterior, middle, and posterior cerebral arteries forming an anastomotic network on the surface of the hemispheres.
Age-dependent differences in cranial bone development, cerebral vascular physiology and neurological lesions distinguish neonates, infants and children from their adult counterparts. In particular, the central nervous system (CNS) undergoes a tremendous amount of structural and physiological change during the first 2 years of life. This chapter highlights these age-dependent differences and their effect on the perioperative management of the paediatric neurosurgical patient. Children in this age group can present with a wide variety of pathologies requiring surgical intervention including trauma, congenital abnormalities such as craniosynostosis, hydrocephalus, intracranial tumours, intracranial vascular lesions and seizure disorders. Age-dependent differences in cerebrovascular physiology have a significant impact on the perioperative management of neurosurgical patients. Given the systemic effects of general anaesthesia and the physiological stress of surgery, an organ system-based approach is optimal for anticipating potential physiological derangements and coexisting disease states that may increase the risk of perioperative complications.