We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
X-ray powder diffraction data, unit-cell parameters, and space group for rivaroxaban, C19H18ClN3O5S, are reported [a = 9.010(3) Å, b = 10.986(6) Å, c = 11.230(1) Å, α = 63.439(5)°, β = 74.355(4)°, γ = 78.133(3)°, unit-cell volume V = 952.87 Å3, Z = 2, ρcal = 1.519 g cm−3, and space group P1]. All measured lines were indexed and are consistent with the P1 space group. No detectable impurities were observed.
We aimed to evaluate the association between coffee and/or tea consumption and breast cancer (BC) risk among premenopausal and postmenopausal women and to conduct a network meta-analysis.
Design:
Systematic review and network meta-analysis.
Setting:
We conducted a systematic review of electronic publications in the last 30 years to identify case–control studies or prospective cohort studies that evaluated the effects of coffee and tea intake.
Results:
Forty-five studies that included more than 3 323 288 participants were eligible for analysis. Network meta-analysis was performed to determine the effects of coffee and/or tea consumption on reducing BC risk in a dose-dependent manner and differences in coffee/tea type, menopause status, hormone receptor and the BMI in subgroup and meta-regression analyses. According to the first pairwise meta-analysis, low-dose coffee intake and high-dose tea intake may exhibit efficacy in preventing ER(estrogen receptor)− BC, particularly in postmenopausal women. Then, we performed another pairwise and network meta-analysis and determined that the recommended daily doses were 2–3 cups/d of coffee or ≥5 cups/d of tea, which contained a high concentration of caffeine, particularly in postmenopausal women.
Conclusions:
Coffee and tea consumption is not associated with a reduction in the overall BC risk in postmenopausal women and is associated with a potentially lower risk of ER− BC. And the highest recommended dose is 2–3 cups of coffee/d or ≥5 cups of tea/d. They are potentially useful dietary protectants for preventing BC.
Over recent decades, Chinese giant salamanders Andrias spp. have declined dramatically across much of their range. Overexploitation and habitat degradation have been widely cited as the cause of these declines. To investigate the relative contribution of each of these factors in driving the declines, we carried out standardized ecological and questionnaire surveys at 98 sites across the range of giant salamanders in China. We did not find any statistically significant differences between water parameters (temperature, dissolved oxygen, ammonia, nitrite, nitrate, salinity, alkalinity, hardness and flow rate) recorded at sites where giant salamanders were detected by survey teams and/or had been recently seen by local respondents, and sites where they were not detected and/or from which they had recently been extirpated. Additionally, we found direct and indirect evidence that the extraction of giant salamanders from the wild is ongoing, including within protected areas. Our results support the hypothesis that the decline of giant salamanders across China has been primarily driven by overexploitation. Data on water parameters may be informative for the establishment of conservation breeding programmes, an initiative recommended for the conservation of these species.
To evaluate the epidemiological and clinical characteristics of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among healthcare workers (HCWs) in Hubei Province, China.
Design:
Retrospective cohort study.
Setting:
Hubei Provincial Center for Disease Control and Prevention.
Participants:
The participants in this study are cases identified by epidemiological investigation in Hubei Province, as of February 27, 2020, and were followed until March 7, 2020. In total, 1,989 HCWs and 41,137 other occupational cases were included for analysis.
Methods:
We used descriptive statistics to summarize patient characteristics.
Results:
Of 1,989 laboratory-confirmed HCWs, 297 (14.93%) had severe or critical cases, 73 (3.67%) had asymptomatic infections, and 18 died of coronavirus disease 2019 (COVID-19). The case fatality rate was 0.9%. The proportion of severe or critical cases decreased from the beginning to the end of the outbreak (from 21.29% to 3.52%), and the proportion of asymptomatic cases increased from 0.0% to 47.18%. Nearly half of HCWs with confirmed COVID-19 reported no known contact with COVID-19 patients (969, 48.72%). Fever and cough were the most common symptoms at disease onset in both HCWs and other occupational cases; however, HCWs had higher rates of fatigue (30.90% vs 25.02%; P < .001) and myalgia (19.15% vs 13.43%; P < .001). Additionally, compared with other occupational groups, HCWs were associated with a lower risk of death after adjustment for potential confounders (odd ratio [OR], 0.50; 95% confidence interval [CI], 0.30–0.79).
Conclusions:
Compared with COVID-19 cases in other occupational groups, HCWs with COVID-19 have half the risk of death, although they have been shown to have higher rates of fatigue and myalgia.
The clinical characteristics of patients with COVID-19 were analysed to determine the factors influencing the prognosis and virus shedding time to facilitate early detection of disease progression. Logistic regression analysis was used to explore the relationships among prognosis, clinical characteristics and laboratory indexes. The predictive value of this model was assessed with receiver operating characteristic curve analysis, calibration and internal validation. The viral shedding duration was calculated using the Kaplan–Meier method, and the prognostic factors were analysed by univariate log-rank analysis and the Cox proportional hazards model. A retrospective study was carried out with patients with COVID-19 in Tianjin, China. A total of 185 patients were included, 27 (14.59%) of whom were severely ill at the time of discharge and three (1.6%) of whom died. Our findings demonstrate that patients with an advanced age, diabetes, a low PaO2/FiO2 value and delayed treatment should be carefully monitored for disease progression to reduce the incidence of severe disease. Hypoproteinaemia and the fever duration warrant special attention. Timely interventions in symptomatic patients and a time from symptom onset to treatment <4 days can shorten the duration of viral shedding.
The frequency division multiple access (FDMA) strategy used in GLONASS causes inter-frequency phase bias (IFPB) and inter-frequency code bias (IFCB) between receivers from different manufacturers. The existence of IFPB and IFCB significantly increases the difficulties of fixing GLONASS ambiguity and limits the accuracy and reliability of GLONASS positioning. Moreover, the initial value of IFPB and IFCB may be unavailable or unreliable with the increasing number of receivers from different manufacturers in recent years. In this study, a real-time and reliable calibration algorithm of IFPB and IFCB based on multi-GNSS assistance is proposed by providing a fixed solution. Real-time IFPB rate and IFCB can be obtained using this algorithm without the initial IFPB and IFCB. The IFPB rate for all GLONASS satellites and IFCB for each GLONASS satellite are estimated due to different characteristics of IFPB and IFCB. IFPB calibration can be divided into constant and real-time IFPB calibrations to meet the different positioning requirements. Results show that constant IFPB rate has only 2 mm difference from the mean value of real-time IFPB rate. The IFPB rate and IFCB estimated by this algorithm have excellent stability, and the change in reference satellite cannot affect the results of IFPB rate and the stability of IFCB. The centimetre-level positioning results can be obtained using two calibration methods, and the positioning results with real-time calibration method are 10%–20% better than those with the constant calibration method. Under satellite-deprived environments, the improvements of multi-GNSS positioning accuracy with constant inter-frequency bias calibration gradually increase as the satellite cut-off elevation angle increases compared with GPS/BDS, which can reach up to 0·9 cm in the vertical direction.
The microbiota–gut–brain axis, especially the microbial tryptophan (Trp) biosynthesis and metabolism pathway (MiTBamp), may play a critical role in the pathogenesis of major depressive disorder (MDD). However, studies on the MiTBamp in MDD are lacking. The aim of the present study was to analyze the gut microbiota composition and the MiTBamp in MDD patients.
Methods
We performed shotgun metagenomic sequencing of stool samples from 26 MDD patients and 29 healthy controls (HCs). In addition to the microbiota community and the MiTBamp analyses, we also built a classification based on the Random Forests (RF) and Boruta algorithm to identify the gut microbiota as biomarkers for MDD.
Results
The Bacteroidetes abundance was strongly reduced whereas that of Actinobacteria was significantly increased in the MDD patients compared with the abundance in the HCs. Most noteworthy, the MDD patients had increased levels of Bifidobacterium, which is commonly used as a probiotic. Four Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs) (K01817, K11358, K01626, K01667) abundances in the MiTBamp were significantly lower in the MDD group. Furthermore, we found a negative correlation between the K01626 abundance and the HAMD scores in the MDD group. Finally, RF classification at the genus level can achieve an area under the receiver operating characteristic curve of 0.890.
Conclusions
The present findings enabled a better understanding of the changes in gut microbiota and the related Trp pathway in MDD. Alterations of the gut microbiota may have the potential as biomarkers for distinguishing MDD patients form HCs.
To explore whether and how group cognitive-behavioural therapy (GCBT) plus medication differs from medication alone for the treatment of generalised anxiety disorder (GAD).
Methods:
Hundred and seventy patients were randomly assigned to the GCBT plus duloxetine (n=89) or duloxetine group (n=81). The primary outcomes were Hamilton Anxiety Scale (HAMA) response and remission rates. The explorative secondary measures included score reductions from baseline in the HAMA total, psychic, and somatic anxiety subscales (HAMA-PA, HAMA-SA), the Hamilton Depression Scale, the Severity Subscale of Clinical Global Impression Scale, Global Assessment of Functioning, and the 12-item Short-Form Health Survey. Assessments were conducted at baseline, 4-week, 8-week, and 3-month follow-up.
Results:
At 4 weeks, HAMA response (GCBT group 57.0% vs. control group 24.4%, p=0.000, Cohen’s d=0.90) and remission rates (GCBT group 21.5% vs. control group 6.2%, p=0.004; d=0.51), and most secondary outcomes (all p<0.05, d=0.36−0.77) showed that the combined therapy was superior. At 8 weeks, all the primary and secondary significant differences found at 4 weeks were maintained with smaller effect sizes (p<0.05, d=0.32−0.48). At 3-month follow-up, the combined therapy was only significantly superior in the HAMA total (p<0.045, d=0.43) and HAMA-PA score reductions (p<0.001, d=0.77). Logistic regression showed superiority of the combined therapy for HAMA response rates [odds ratio (OR)=2.12, 95% confidence interval (CI) 1.02−4.42, p=0.04] and remission rates (OR=2.80, 95% CI 1.27−6.16, p=0.01).
Conclusions:
Compared with duloxetine alone, GCBT plus duloxetine showed significant treatment response for GAD over a shorter period of time, particularly for psychic anxiety symptoms, which may suggest that GCBT was effective in changing cognitive style.
To explore the relationships of serum 25-hydroxyvitamin D (25(OH)D) with obesity and metabolic parameters in US children.
Design:
Cross-sectional analysis. We evaluated the associations between serum 25(OH)D and multiple measurements of adiposity, serum lipid concentrations, fasting glucose and insulin resistance in children aged 6–18 years with adjustments for multiple covariates.
Setting:
The National Health and Nutrition Examination Survey, 2001–2006.
Participants:
A nationally representative sample of 6311 children and adolescents aged 6–18 years.
Results:
Among US children and adolescents, the prevalence of vitamin D deficiency has been especially high in older children, girls and the non-Hispanic Black population. Higher odds of obesity were found at a 25(OH)D concentration of <30 nmol/l (deficiency) than at >50 nmol/l under both criteria for obesity in children (OR = 3·27, Ptrend ≤ 0.001). Moreover, increased odds of having abnormal HDL-cholesterol (OR = 1·71, Ptrend ≤ 0.001) and impaired insulin resistance (OR = 4·15, Ptrend ≤ 0·001) were found for children deficient in 25(OH)D compared with those with normal 25(OH)D concentrations. When the children and adolescents were stratified by gender, we found stronger associations between serum 25(OH)D concentration and both HDL-cholesterol and insulin resistance in girls. No association of 25(OH)D with any other metabolic parameter was found.
Conclusions:
Our results suggest a potential harmful association between low serum 25(OH)D concentration and the risk of obesity among children. However, the underlying mechanisms require further investigation.
Although the streaked optical pyrometer (SOP) system has been widely adopted in shock temperature measurements, its reliability has always been of concern. Here, two calibrated Planckian radiators with different color temperatures were used to calibrate and verify the SOP system by comparing the two calibration standards using both multi-channel and single-channel methods. A high-color-temperature standard lamp and a multi-channel filter were specifically designed for the measurement system. To verify the reliability of the SOP system, the relative deviation between the measured data and the standard value of less than 5% was calibrated out, which demonstrates the reliability of the SOP system. Furthermore, a method to analyze the uncertainty and sensitivity of the SOP system is proposed. A series of laser-induced shock experiments were conducted at the ‘Shenguang-II’ laser facility to verify the reliability of the SOP system for temperature measurements at tens of thousands of kelvin. The measured temperature of the quartz in our experiments agreed fairly well with previous works, which serves as evidence for the reliability of the SOP system.
Four isonitrogenous and isoenergetic purified diets containing free arachidonic acid (ARA) or EPA (control group), 0·30 % ARA, 0·30 % EPA and 0·30 % ARA+EPA (equivalent) were designed to feed juvenile grass carp (10·21 (sd 0·10) g) for 10 weeks. Only the EPA group presented better growth performance compared with the control group (P<0·05). Dietary ARA and EPA were incorporated into polar lipids more than non-polar lipids in hepatopancreas but not intraperitoneal fat (IPF) tissue. Fish fed ARA and EPA showed an increase of serum superoxide dismutase and catalase activities, and decrease of glutathione peroxidase activity and malondialdehyde contents (P<0·05). The hepatopancreatic TAG levels decreased both in ARA and EPA groups (P<0·05), accompanied by the decrease of lipoprotein lipase (LPL) activity in the ARA group (P<0·05). Fatty acid synthase (FAS), diacylglycerol O-acyltransferase and apoE gene expression in the hepatopancreas decreased in fish fed ARA and EPA, but only the ARA group exhibited increased mRNA level of adipose TAG lipase (ATGL) (P<0·05). Decreased IPF index and adipocyte sizes were found in the ARA group (P<0·05). Meanwhile, the ARA group showed decreased expression levels of adipogenic genes CCAAT enhancer-binding protein α, LPL and FAS, and increased levels of the lipid catabolic genes PPARα, ATGL, hormone-sensitive lipase and carnitine palmitoyltransferase 1 (CPT-1) in IPF, whereas the EPA group only increased PPARα and CPT-1 mRNA expression and showed less levels than the ARA group. Overall, dietary EPA is beneficial to the growth performance, whereas ARA is more potent in inducing lipolysis and inhibiting adipogenesis, especially in IPF. Meanwhile, dietary ARA and EPA showed the similar preference in esterification and the improvement in antioxidant response.
Ca0.98Eu0.02Al1−4δ/3Si1+δN3 (δ = 0–0.36) red-emitting phosphors were prepared by carbothermal reduction and nitridation method with stable and inexpensive CaCO3 as Ca source. Optimal nominal composition was obtained at δ = 0.18, showing intense emission peaked at 625 nm and high external quantum efficiency of 71%. The emission wave length could be successfully tuned from 630 to 606 nm with increasing δ value. Ca0.98Eu0.02Al1−4δ/3Si1+δN3 phosphors provided two coordinated environments for Eu2+ ions, resulting in two fitted Gaussian peaks. Energy transfer from Eu2+ sites in Si-rich environments to those in Si/Al-equivalent modes has been confirmed by analysis of the decay curve of each peak. The decay behaviors suggested that energy transfer effect slowed with higher δ value. Finally, warm white light was created by combining as-prepared red-emitting Ca0.98Eu0.02Al0.76Si1.18N3 and yellow-emitting YAG:Ce3+ phosphors with a blue-emitting chip, exhibiting a color rendering index Ra of 91 at a low correlated color temperature of 3500 K with a luminous efficiency of 79 lm/W.
To assess correlations between cruciferous vegetable intake and urinary isothiocyanate (ITC) level, in addition to glutathione S-transferase (GST) genotypes and other individual factors.
Design
The study included cohort participants whose urinary ITC levels had been previously ascertained. Urinary ITC was assessed using HPLC. Usual dietary intake of cruciferous vegetables was assessed using a validated FFQ and total dietary ITC intake was calculated. Recent cruciferous vegetable intake was determined. GST genotypes were assessed using duplex real-time quantitative PCR assays. Spearman correlations were calculated between the covariates and urinary ITC levels and linear regression analyses were used to calculate the mean urinary ITC excretion according to GST genotype.
Setting
Urban city in China.
Subjects
The study included 3589 women and 1015 men from the Shanghai Women’s and Men’s Health Studies.
Results
Median urinary ITC level was 1·61 nmol/mg creatinine. Self-reported usual cruciferous vegetable intake was weakly correlated with urinary ITC level (rs=0·1149; P<0·0001), while self-reported recent intake was more strongly correlated with urinary ITC (rs=0·2591; P<0·0001). Overall, the GST genotypes were not associated with urinary ITC level, but significant differences according to genotype were observed among current smokers and participants who provided an afternoon urine sample. Other factors, including previous gastrectomy or gastritis, were also related to urinary ITC level.
Conclusions
The study suggests that urinary secretion of ITC may provide additional information on cruciferous vegetable intake and that GST genotypes are related to urinary ITC level only in some subgroups.
A joint diagnostic system was established for the diagnosis of laser-driven shock wave experiments. The system has high temporal resolution (time resolution ~12 ps) and high spatial resolution (spatial resolution ~7 μm) and fits for diagnostics of the experiment with small sample size and short time physical process. The joint diagnostic system was applied for shock wave measurement on the Shenguang-II laser facility. The passive shock breakout signal and active diagnostic signal were simultaneously obtained. The temporal measurement reliability of the system was verified using a multi-layered target. The experimental results show that the two measurement results were consistent.
Retinal ganglion cell line (RGC-5) has been widely used as a valuable model for studying pathophysiology and physiology of retinal ganglion cells in vitro. However, the electrophysiological characteristics, especially a thorough classification of ionic currents in the cell line, remain to be elucidated in details. In the present study, we determined the resting membrane potential (RMP) in RGC-5 cell line and then identified different types of ionic currents by using the whole-cell patch-clamp technique. The RMP recorded in the cell line was between −30 and −6 mV (−17.6 ± 2.6 mV, n = 10). We observed the following voltage-gated ion channel currents: (1) inwardly rectifying Cl− current (ICl,ir), which could be blocked by Zn2+; (2) Ca2+-activated Cl− current (ICl,Ca), which was sensitive to extracellular Ca2+ and could be inhibited by disodium 4,4’-diisothiocyanatostilbene-2,2’-disulfonate; (3) inwardly rectifying K+ currents (IK1), which could be blocked by Ba2+; (4) a small amount of delayed rectifier K+ current (IK). On the other hand, the voltage-gated sodium channels current (INa) and transient outward potassium channels current (IA) were not observed in this cell line. These results further characterize the ionic currents in the RGC-5 cell line and are beneficial for future studies especially on ion channel (patho)physiology and pharmacology in the RGC-5 cell line.
The present study investigated the effects of xanthophyll supplementation on production performance, antioxidant capacity (measured by glutathione peroxidase, superoxide dismutase (SOD), catalase, total antioxidant capacity (T-AOC), and reduced glutathione:oxidised glutathione ratio (GSH:GSSG)) and lipid peroxidation (measured by malondialdehyde (MDA)) in breeding hens and chicks. In Expt 1, 432 hens were fed diets supplemented with 0 (control group), 20 or 40 mg xanthophyll/kg diet. Blood samples were taken at 7, 14, 21, 28 and 35 d of the trial. Liver and jejunal mucosa were sampled at 35 d. Both xanthophyll groups improved serum SOD at 21 and 28 d, serum T-AOC at 21 d and liver T-AOC, and serum GSH:GSSG at 21, 28 and 35 d and liver GSH:GSSG. Xanthophylls also decreased serum MDA at 21 d in hens. Expt 2 was a 2 × 2 factorial design. Male chicks hatched from 0 or 40 mg in ovo xanthophyll/kg diet of hens were fed a diet containing either 0 or 40 mg xanthophyll/kg diet. Liver samples were collected at 0, 7, 14 and 21 d after hatching. Blood samples were also collected at 21 d. In ovo-deposited xanthophylls increased antioxidant capacity and decreased MDA in the liver mainly within 1 week after hatching. Maternal effects gradually vanished during 1–2 weeks after hatching. Dietary xanthophylls increased antioxidant capacity and decreased MDA in the liver and serum mainly from 2 weeks onwards. Data suggested that xanthophyll supplementation enhanced antioxidant capacity and reduced lipid peroxidation in different tissues of hens and chicks.
In this paper we report the nano-phase separation structure in the polymer
blend film and its optical properties. Polystyrene (PS)/polymethyl
methacrylate (PMMA) blend film is spin-coated on substrate. A sandwiched
structure consisting of a depleted PMMA layer, a PS/PMMA blend layer and a
PS-rich top layer has been formed. By selectively dissolving the PS-rich
phase, a nanoporous film is generated, and the nanoporous structure can be
tuned by changing the weight ratio of PS/PMMA in the blend solution in
fabrication. The optical properties of the nanoporous thin films are
determined. Our results show that by introducing the nanoporous structure,
the refractive index can be effectively modified. By selecting proper film
thickness, the maximum optical transmission can be achieved in the specific
waveband.
Growing yellow cattle (Bos taurus, n 30, 1·0–3·5 years old and 75–240 kg) from their native altitude (2000–2800 m) were used to evaluate the effects of altitude, ambient temperature (Ta) and solar radiation on the basal energy metabolism in this large mammal. Fasting heat production (FHP) was measured at altitudes of 2260, 3250 and 4270 m on the Tibetan plateau both in the summer and winter respectively, after a 90 d adaptation period at each experimental site. The gas exchanges of the whole animal were determined continuously for 3 (2260 and 3250 m) or 2 (4270 m) d after a 96 (2260 and 3250 m) or 48 (4270 m) h starvation period, using closed-circuit respiratory masks. Increasing altitude from 2260 to 3250 m at similar Ta in the summer significantly elevated FHP for all animals (P<0·01), and from 3250 to 4270 m for young cattle (P<0·05); increasing altitude from 2260 to 3250 m in the winter also significantly elevated FHP (P<0·05), but the increase was mainly due to the decrease of Ta and the increase in wind speed. No results were obtained at 4270 m in the winter, due to the problems of the animals, adaptating to the altitude. The magnitude of FHP elevation caused by increasing altitude was greater with summer sunshine or winter wind than without them. Increase of Ta from 10·0 to 22·0°C, in the presence of solar radiation, slightly (2260 m) or significantly (3250 and 4270 m, P<0·01) elevated FHP, but slightly reduced it in the absence of solar radiation; decrease of Ta from 0·0 to −30·0°C linearly increased FHP. At 3250 and 4270 m, FHP at the same Ta was higher with summer sunshine or winter wind (3250 m) than without them, but this did not occur at 2260 m. In conclusion, high altitude elevates FHP in yellow cattle in the warm season, and the summer solar radiation and winter wind at high altitude significantly increase metabolic rate. It may be also concluded that the effects of solar radiation on metabolic rate depend on the altitude and the environmental temperature.
Thirty growing yaks Bos grunniens or Poephagus grunniens, 1·0–3·5 years and 50–230kg, from their native altitudes (3000–4000m), were used to study the basal metabolism in this species and to evaluate the effects of high altitude and season on the energy metabolism. Fasting heat production (FHP) was measured at altitudes of 2260, 3250 and 4270m on the Tibetan plateau in both the summer and the winter, after a 90d adaptation period at each experimental site. Gas exchanges of the whole animals were determined continuously for 3d (4–5 times per d, 10–12 min each time) after a 96 h starvation period, using closed-circuit respiratory masks. Increasing altitude at similar ambient temperature (Ta) did not affect (P>0·10) FHP in the summer, but decreased (P<0·05) it at different Ta in the winter. However, the decrease of FHP in the winter was mainly due to the decrease of Ta instead of the increase of altitude. In the summer, the respiratory rate, heart rate and body temperature were unaffected by altitude, except for a decrease (P<0·05) in body temperature at 4270m; in the winter, they were decreased (P<0·05) by increasing altitude. In both seasons, the RER was decreased (P<0·05) by increasing altitude. At all altitudes for all groups, the daily FHP was higher (P<0·05) in the summer (Ta 6–24°C) than in the winter (Ta 0 to -30°C), and the Ta-corrected FHP averaged on 920 kJ/kg body weight0·52 at Ta 8–14°C and on 704 kJ/kg body weight0·52 at Ta -15°C respectively. We conclude that in the yak high altitude has no effect on the energy metabolism, whereas the cold ambient temperature has a significant depressing effect. The results confirm that the yak has an excellent adaptation to both high altitude and extremely cold environments.
An organothermal reduction process has been successfully developed for synthesis of nanocrystalline Ni2P in benzene at 140 °C. An x-ray powder diffraction pattern (XRD) indicated that the product was pure hexagonal Ni2P phase with a cell constants a =0.5866 and c = 0.3377 nm. Transmission electron microscopy (TEM) showed that the average particle size of the powders was 40 nm with a circular-shaped flake morphology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.