We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The long-term effects of pediatric concussion on white matter microstructure are poorly understood. This study investigated long-term changes in white matter diffusion properties of the corpus callosum in youth several years after concussion.
Methods:
Participants were 8–19 years old with a history of concussion (n = 36) or orthopedic injury (OI) (n = 21). Mean time since injury for the sample was 2.6 years (SD = 1.6). Participants underwent diffusion magnetic resonance imaging, completed cognitive testing, and rated their post-concussion symptoms. Measures of diffusivity (fractional anisotropy, mean, axial, and radial diffusivity) were extracted from white matter tracts in the genu, body, and splenium regions of the corpus callosum. The genu and splenium tracts were further subdivided into 21 equally spaced regions along the tract and diffusion values were extracted from each of these smaller regions.
Results:
White matter tracts in the genu, body, and splenium did not differ in diffusivity properties between youth with a history of concussion and those with a history of OI. No significant group differences were found in subdivisions of the genu and splenium after correcting for multiple comparisons. Diffusion metrics did not significantly correlate with symptom reports or cognitive performance.
Conclusions:
These findings suggest that at approximately 2.5 years post-injury, youth with prior concussion do not have differences in their corpus callosum microstructure compared to youth with OI. Although these results are promising from the perspective of long-term recovery, further research utilizing longitudinal study designs is needed to confirm the long-term effects of pediatric concussion on white matter microstructure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.