We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recent well-powered genome-wide association studies have enhanced prediction of substance use outcomes via polygenic scores (PGSs). Here, we test (1) whether these scores contribute to prediction over-and-above family history, (2) the extent to which PGS prediction reflects inherited genetic variation v. demography (population stratification and assortative mating) and indirect genetic effects of parents (genetic nurture), and (3) whether PGS prediction is mediated by behavioral disinhibition prior to substance use onset.
Methods
PGSs for alcohol, cannabis, and nicotine use/use disorder were calculated for Minnesota Twin Family Study participants (N = 2483, 1565 monozygotic/918 dizygotic). Twins' parents were assessed for histories of substance use disorder. Twins were assessed for behavioral disinhibition at age 11 and substance use from ages 14 to 24. PGS prediction of substance use was examined using linear mixed-effects, within-twin pair, and structural equation models.
Results
Nearly all PGS measures were associated with multiple types of substance use independently of family history. However, most within-pair PGS prediction estimates were substantially smaller than the corresponding between-pair estimates, suggesting that prediction is driven in part by demography and indirect genetic effects of parents. Path analyses indicated the effects of both PGSs and family history on substance use were mediated via disinhibition in preadolescence.
Conclusions
PGSs capturing risk of substance use and use disorder can be combined with family history measures to augment prediction of substance use outcomes. Results highlight indirect sources of genetic associations and preadolescent elevations in behavioral disinhibition as two routes through which these scores may relate to substance use.
Substance use occurs at a high rate in persons with a psychiatric disorder. Genetically informative studies have the potential to elucidate the etiology of these phenomena. Recent developments in genome-wide association studies (GWAS) allow new avenues of investigation.
Method
Using results of GWAS meta-analyses, we performed a factor analysis of the genetic correlation structure, a genome-wide search of shared loci, and causally informative tests for six substance use phenotypes (four smoking, one alcohol, and one cannabis use) and five psychiatric disorders (ADHD, anorexia, depression, bipolar disorder, and schizophrenia).
Results
Two correlated externalizing and internalizing/psychosis factor were found, although model fit was beneath conventional standards. Of 458 loci reported in previous univariate GWAS of substance use and psychiatric disorders, about 50% (230 loci) were pleiotropic with additional 111 pleiotropic loci not reported from past GWAS. Of the 341 pleiotropic loci, 152 were associated with both substance use and psychiatric disorders, implicating neurodevelopment, cell morphogenesis, biological adhesion pathways, and enrichment in 13 different brain tissues. Seventy-five and 114 pleiotropic loci were specific to either psychiatric disorders or substance use phenotypes, implicating neuronal signaling pathway and clathrin-binding functions/structures, respectively. No consistent evidence for phenotypic causation was found across different Mendelian randomization methods.
Conclusions
Genetic etiology of substance use and psychiatric disorders is highly pleiotropic and involves shared neurodevelopmental path, neurotransmission, and intracellular trafficking. In aggregate, the patterns are not consistent with vertical pleiotropy, more likely reflecting horizontal pleiotropy or more complex forms of phenotypic causation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.