We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Posttraumatic stress symptoms (PTSS) are common following traumatic stress exposure (TSE). Identification of individuals with PTSS risk in the early aftermath of TSE is important to enable targeted administration of preventive interventions. In this study, we used baseline survey data from two prospective cohort studies to identify the most influential predictors of substantial PTSS.
Methods
Self-identifying black and white American women and men (n = 1546) presenting to one of 16 emergency departments (EDs) within 24 h of motor vehicle collision (MVC) TSE were enrolled. Individuals with substantial PTSS (⩾33, Impact of Events Scale – Revised) 6 months after MVC were identified via follow-up questionnaire. Sociodemographic, pain, general health, event, and psychological/cognitive characteristics were collected in the ED and used in prediction modeling. Ensemble learning methods and Monte Carlo cross-validation were used for feature selection and to determine prediction accuracy. External validation was performed on a hold-out sample (30% of total sample).
Results
Twenty-five percent (n = 394) of individuals reported PTSS 6 months following MVC. Regularized linear regression was the top performing learning method. The top 30 factors together showed good reliability in predicting PTSS in the external sample (Area under the curve = 0.79 ± 0.002). Top predictors included acute pain severity, recovery expectations, socioeconomic status, self-reported race, and psychological symptoms.
Conclusions
These analyses add to a growing literature indicating that influential predictors of PTSS can be identified and risk for future PTSS estimated from characteristics easily available/assessable at the time of ED presentation following TSE.
This book is primarily about prevention; its emphasis is on interventions that can be done at the time of cancer diagnosis – modifications of treatment and techniques for storing gametes, tissues or embryos for future use. By contrast, this chapter explores options open to cancer survivors after treatment has been completed. If preventive treatment was successful, either through medical interventions such as using less gonadotoxic regimens, fertility-sparing surgery, oophoropexy or gonadoprotective adjuncts like GnRH agonists, normal fertility has been preserved. Other survivors may be able to conceive using the gametes, embryos or tissue that was obtained and cryopreserved before their gonadotoxic treatment(s). However, in some cases, fertility preservation may not have been possible before treatment or, alternatively, the cryopreserved gametes, embryos or tissue may not have resulted in a successful pregnancy. This chapter provides insight into the fertility management of cancer survivors with compromised or absent ovarian function, who do not have cryopreserved gametes, embryos, or ovarian tissue.
The transplantation of endocrine organs can be regarded as the oldest form of transplantation in modern medical history. By the end of the nineteenth and beginning of the twentieth centuries, a large research focus was set on endocrine transplantations. Before the complex endocrine secretion and function was even understood, researchers attempted to cure endocrine diseases and infertility through transplantation of the endocrine glands and gonads. Hence, most endocrine organs have been transplanted in that period, including the thyroid [1], the adrenal gland [2], the testis [3] and the ovary [4]. Even though the principles of transplant rejection have not been understood at that time, researchers already noticed successful transplantations almost exclusively in experiments with autografts. The first published allogeneic ovarian transplantations in animals have been performed by Paul Bert in the sixties of the nineteenth century [5].
According to the most recent cancer statistics, more than 870,000 new diagnosis of cancer are expected in the US female population in 2018, with the three most common cancers in women being breast, lung, and colorectal cancers [1].
Several improvements have been made in the early diagnosis and treatment of infant and adults cancer and these advances have resulted in greatly increased life expectancy and chances of survival. Nevertheless, some oncological treatments, although leading to cancer cure rates higher than 90%, have a detrimental effect in the reproductive potential of children and young women, resulting in a population at high-risk of developing premature ovarian insufficiency (POI) and therefore infertility [2].
In order to prevent the risk of facing this outcome, fertility preservation options are offered to these patients in order to protect their fertility potential prior to gonadotoxic treatment. Among the available options, ovarian tissue cryopreservation and transplantation is the only method suitable for prepubertal girls and adult women who require urgent treatment.