Electro-mechanical properties in the pseudo-ternary solid solution system of PbZrO3-PbTiO3- Pb(Mn1/3Sb2/3)O3 piezoelectric ceramics were studied by changing the vibration- level using a constant current / velocity driving method. The vibration velocity is proportional to the driving electric field under a relatively low field. The velocity, however, deviates from a linear relationship as electric field increases and converges on a certain value.
The increase of the vibration-level is accompanied by a large amount of heat generation as well, and this heat generation sets a practical upper limit of the vibration-level. The heat generation is caused by a dissipated-vibration-energy which is represented as a function of vibration velocity and the constants depending on the materials and transducers.
In these pseudo-ternary solid solution ceramics, the compositional ratio which shows excellent electro-mechanical properties under a relatively low vibration-level does not necessarily coincide with the compositional ratio which is excellent under a relatively high vibration-level.