We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dynamic soaring improves the endurance of Unmanned Aerial Vehicles (UAVs) by obtaining energy from the horizontal wind shear gradient. The use of dynamic soaring in small solar UAVs can mitigate the trade-off between energy capacity and battery weight to achieve continuous all-day flight. The goal of this study is to determine the optimal energy acquisition methods for small solar UAVs using dynamic soaring and to decrease the battery weight to achieve all-day flight. A dynamic soaring UAV model that considers the influence of the wind shear gradient and a solar power energy model are established. The conditions to obtain a closed-loop energy system during daytime and nighttime flights are discussed, and the minimum mass of the energy system required for these conditions is determined. Simulations of single-cycle circular flights and a 72-h continuous flight of a small solar UAV are performed. The analyses and simulation results show that: (1) the combination of dynamic soaring and solar technology significantly reduces the energy consumption and reduces the required battery weight, (2) the flight speed and flight attitude angles have significant effects on the optimal total energy acquisition and (3) wind fields with a large horizontal gradient and strong solar illumination provide energy and load advantages.
To describe the pattern of transmission of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) during 2 nosocomial outbreaks of coronavirus disease 2019 (COVID-19) with regard to the possibility of airborne transmission.
Design:
Contact investigations with active case finding were used to assess the pattern of spread from 2 COVID-19 index patients.
Setting:
A community hospital and university medical center in the United States, in February and March, 2020, early in the COVID-19 pandemic.
Patients:
Two index patients and 421 exposed healthcare workers.
Methods:
Exposed healthcare workers (HCWs) were identified by analyzing the electronic medical record (EMR) and conducting active case finding in combination with structured interviews. Healthcare coworkers (HCWs) were tested for COVID-19 by obtaining oropharyngeal/nasopharyngeal specimens, and RT-PCR testing was used to detect SARS-CoV-2.
Results:
Two separate index patients were admitted in February and March 2020, without initial suspicion for COVID-19 and without contact or droplet precautions in place; both patients underwent several aerosol-generating procedures in this context. In total, 421 HCWs were exposed in total, and the results of the case contact investigations identified 8 secondary infections in HCWs. In all 8 cases, the HCWs had close contact with the index patients without sufficient personal protective equipment. Importantly, despite multiple aerosol-generating procedures, there was no evidence of airborne transmission.
Conclusion:
These observations suggest that, at least in a healthcare setting, most SARS-CoV-2 transmission is likely to take place during close contact with infected patients through respiratory droplets, rather than by long-distance airborne transmission.
Post-stroke depression (PSD) is the most common psychiatric complication facing stroke survivors and has been associated with increased distress, physical disability, poor rehabilitation, and suicidal ideation. However, the pathophysiological mechanisms underlying PSD remain unknown, and no objective laboratory-based test is available to aid PSD diagnosis or monitor progression.
Methods:
Here, an isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic approach was performed to identify differentially expressed proteins in plasma samples obtained from PSD, stroke, and healthy control subjects.
Results:
The significantly differentiated proteins were primarily involved in lipid metabolism and immunoregulation. Six proteins associated with these processes – apolipoprotein A-IV (ApoA-IV), apolipoprotein C-II (ApoC-II), C-reactive protein (CRP), gelsolin, haptoglobin, and leucine-rich alpha-2-glycoprotein (LRG) – were selected for Western blotting validation. ApoA-IV expression was significantly upregulated in PSD as compared to stroke subjects. ApoC-II, LRG, and CRP expression were significantly downregulated in both PSD and HC subjects relative to stroke subjects. Gelsolin and haptoglobin expression were significantly dysregulated across all three groups with the following expression profiles: gelsolin, healthy control > PSD > stroke subjects; haptoglobin, stroke > PSD > healthy control.
Conclusions:
Early perturbation of lipid metabolism and immunoregulation may be involved in the pathophysiology of PSD. The combination of increased gelsolin levels accompanied by decreased haptoglobin levels shows promise as a plasma-based diagnostic biomarker panel for detecting increased PSD risk in post-stroke patients.
Employing atomic-scale simulations, the response of a high-angle grain boundary (GB), the soft/hard GB, against external loading was systematically investigated. Under tensile loading close to the hard orientation, strain-induced dynamic recrystallization was observed to initiate through direct soft-to-hard grain reorientation, which was triggered by stress mismatch, inhibited by surface tension from the soft-hard GB, and proceeded by interface ledges. Such grain reorientation corresponds with expansion and contraction of the hard grain along and perpendicular to the loading direction, respectively, accompanied by local atomic shuffling, providing relatively large normal strain of 8.3% with activation energy of 0.04 eV per atom. Tensile strain and residual dislocations on the hard/soft GB facilitate the initiation of dynamic recrystallization by lowering the energy barrier and the critical stress for grain reorientation, respectively.
Small Island Developing States (SIDS) are island nations that experience specific social, economic and environmental vulnerabilities associated with small populations, isolation and limited resources. Globally, SIDS exhibit exceptionally high rates of non-communicable disease (NCD) risk and incidence. Despite this, there is a lack of context-specific research within SIDS focused on life course approaches to NCD prevention, particularly the impact of the early-life environment on later disease risk as defined by the Developmental Origins of Health and Disease (DOHaD) framework. Given that globalization has contributed to significant nutritional transitions in these populations, the DOHaD paradigm is highly relevant. SIDS in the Pacific region have the highest rates of NCD risk and incidence globally. Transitions from traditional foods grown locally to reliance on importation of Western-style processed foods high in fat and sugar are common. The Cook Islands is one Pacific SIDS that reports this transition, alongside rising overweight/obesity rates, currently 91%/72%, in the adult population. However, research on early-life NCD prevention within this context, as in many low- and middle-income countries, is scarce. Although traditional research emphasizes the need for large sample sizes, this is rarely possible in the smaller SIDS. In these vulnerable, high priority countries, consideration should be given to utilizing ‘small’ sample sizes that encompass a high proportion of the total population. This may enable contextually relevant research, crucial to inform NCD prevention strategies that can contribute to improving health and well-being for these at-risk communities.
The effect of tunnel cations on tunnel size in α-MnO2 structured (hollandite, cryptomelane) materials has long been of interest, as the tunnel size effects catalytic and transport properties. Previous research on the tunnel size has focused on potassium cryptomelane (KxMn8O16). This paper uses synthetic control of silver content in AgxMn8O16 to investigate the effect that tunnel silver occupancy has on the lattice parameters. Materials with silver (x) content between 1.14 and 1.66 were synthesized, synchrotron diffraction and Rietveld Refinement was used to determine lattice parameters. The lattice parameters were found to contract as silver content increases (from 9.774 Å to 9.738 Å), in contrast to previous investigations of other tunnel cations.
A new instrument for high-resolution optical logging has been built and tested in Antarctica. Its purpose is to obtain records of volcanic products and other scattering features, such as bubbles and impurities, preserved in polar ice sheets, and it achieves this by using long wavelength near-infrared light that is absorbed by the ice before many scattering events occur. Longer wavelengths ensure that the return signal is composed primarily of a single or few backscattering event(s) that limit its spatial spread. The compact optical logger features no components on its body that draw power, which minimizes its size and weight. A prototype of the logger was built and tested at Siple Dome A borehole, and the results were correlated with prior optical logging profiles and records of volcanic products from collected ice core samples.
The present study investigated the effects of different levels of urea nitrogen (N) fertilizer on nutrient accumulation, in vitro rumen gas production and fermentation characteristics of forage oat straw (FOS) from oats (Avena sativa L. ‘Qinghai 444’) grown in the Tibet region of China. Fertilizer, applied at seeding (day 1), stem elongation (days 52–54) and heading (days 63–67), increased plant height and prolonged the maturity stage of the plant by 4–11 days compared with the non-fertilized control. Oat plants were harvested at maturity at the node 3–4 cm above ground, and then separated into grains and FOS. Both FOS and grain yields increased quadratically with increasing N fertilization, and their theoretical maximums occurred at the N fertilizing rates of 439 and 385 kg/ha, respectively. Increases in N fertilization did not affect the hemicellulose content of FOS, but substantially promoted the accumulation of crude protein, cellulose and lignin, resulting in a decrease in the energy content available for metabolism. A 72-h incubation of FOS with rumen fluids from lactating cows showed that increasing N resulted in FOS that showed a slower fermentation rate, decreased in vitro dry matter disappearance and lower cumulative gas production, but unchanged fermentation gas composition. Nitrogen fertilization increased the final pH in culture fluids and decreased the microbial volatile fatty acid (VFA) production. The molar proportions of acetate and propionate were not affected, but molar propionate proportion decreased linearly with increasing urea fertilization, and consequently, the ratio of lipogenic (e.g., acetate and butyrate)-to-glucogenic acids (propionate) tended to increase. In brief, increasing urea N fertilization promoted the growth of forage oats and increased the biomass yield as well as the crude protein and cellulose content of FOS. Considering the negative effect of increased lignin content on nutrient digestibility and total VFA production, the suggested range of urea N fertilization is 156–363 kg N/ha for forage oats planted in Tibet to retain the nutritive value of FOS in the rumen.
A completely randomized experiment for planting highland barley in 36 field plots of the Lhasa Agricultural Experiment Station was applied to investigate the effect of urea nitrogen (N) fertilization levels of 0 (control), 156, 258, 363, 465 and 570 kg/ha on nutrient accumulation, in vitro rumen gas production and fermentation characteristics of highland barley straw (HBS). Each urea application was divided into three portions of 0.4, 0.3 and 0.3 and sequentially fertilized at seeding (growth stage (GS) 0), stem elongation (GS 32) and heading (GS 49), respectively. The maturity stage lasted 5–13 days longer in response to the urea N fertilization compared with the control. After removing grains, HBS biomass was harvested at maturity. The biomass yields of leaf, stem, straw and grain were increased quadratically with increasing urea N fertilization, and HBS and grain yields peaked at the estimated urea N fertilization levels of 385 and 428 kg/ha, respectively. The increase of urea N fertilization increased the accumulation of crude protein, cellulose and lignin, and decreased the content of ash and hemicellulose in HBS, resulting in a decrease of the energy content available to be metabolized. After incubating HBS for 72 h with rumen fluids from lactating cows, the urea N fertilization decreased in vitro dry matter disappearance and cumulative gas production, and slightly altered fermentation end-gas composition. Urea N fertilization decreased microbial volatile fatty acid production, but did not alter the ratio of lipogenic acetate and butyrate to glucogenic propionate. In a brief, the current urea N fertilization strategy promoted the growth of the highland barley and increased biomass yield, protein and cellulose accumulation of HBS. A urea N fertilization level ⩽385 kg/ha could be sufficient for growth of highland barley in Tibet without a consequent nutritive reduction in ruminal digestion.
Escherichia albertii is a newly emerging enteric pathogen that has been associated with gastroenteritis in humans. Recently, E. albertii has also been detected in healthy and sick birds, animals, chicken meat and water. In the present study, the prevalence and characteristics of the eae-positive, lactose non-fermenting E. albertii strains in retail raw meat in China were evaluated. Thirty isolates of such strains of E. albertii were identified from 446 (6·73%) samples, including duck intestines (21·43%, 6/28), duck meat (9·52%, 2/21), chicken intestines (8·99%, 17/189), chicken meat (5·66%, 3/53), mutton meat (4·55%, 1/22) and pork meat (2·44%, 1/41). None was isolated from 92 samples of raw beef meat. Strains were identified as E. albertii by phenotypic properties, diagnostic PCR, sequence analysis of the 16S rRNA gene, and housekeeping genes. Five intimin subtypes were harboured by these strains. All strains possessed the II/III/V subtype group of the cdtB gene, with two strains carrying another copy of the I/IV subtype group. Pulsed-field gel electrophoresis showed high genetic diversity of E. albertii in raw meats. Our findings indicate that E. albertii can contaminate various raw meats, posing a potential threat to public health.
Gray matter (GM) atrophy and disrupted intrinsic functional connectivity (IFC) are often present in patients with amnestic mild cognitive impairment (aMCI), which shows high risk of developing into Alzheimer's disease. Little is known, however, about the relationship between GM atrophy and altered IFC, and whether they are related to cognitive decline.
Method
A total of 30 aMCI and 26 cognitively normal (CN) subjects were recruited for this study. Optimized voxel-based morphometric and resting-state functional connectivity magnetic resonance imaging approaches were performed to measure the GM volumes (GMVs) and atrophy-related IFC, respectively. Multivariate linear regression analysis was used to examine the effects of GM atrophy and IFC on cognitive performance across subjects, after controlling for the effects of age, education, gender and group.
Results
Compared with CN subjects, aMCI subjects showed significantly reduced GMVs and decreased IFC in the frontal-parietal and medial temporal lobe systems. Multivariate regression analysis further demonstrated that the GMVs and decreased IFC simultaneously affected the cognitive function. Specifically, GMVs were positively correlated with cognitive performances, including global cognition and episodic memory, and showed a strong trend in correlation between GMVs and non-episodic memory, whilst IFC was positively correlated with the above three cognitive measures, across all subjects. In addition, significant correlation was found between GMVs and altered IFC strength across all subjects.
Conclusions
Our findings demonstrated that GMVs and IFC jointly contribute to cognitive performance, and combining quantitative information about GMVs and the strength of functional connectivity may serve as an indicator of cognitive deficits in non-demented elderly.
Active control of a turbulent boundary layer has been experimentally investigated with a view to reducing the skin-friction drag and gaining some insight into the mechanism that leads to drag reduction. A spanwise-aligned array of piezo-ceramic actuators was employed to generate a transverse travelling wave along the wall surface, with a specified phase shift between adjacent actuators. Local skin-friction drag exhibits a strong dependence on control parameters, including the wavelength, amplitude and frequency of the oscillation. A maximum drag reduction of 50 % has been achieved at 17 wall units downstream of the actuators. The near-wall flow structure under control, measured using smoke–wire flow visualization, hot-wire and particle image velocimetry techniques, is compared with that without control. The data have been carefully analysed using techniques such as streak detection, power spectra and conditional averaging based on the variable-interval time-average detection. All the results point to a pronounced change in the organization of the perturbed boundary layer. It is proposed that the actuation-induced wave generates a layer of highly regularized streamwise vortices, which acts as a barrier between the large-scale coherent structures and the wall, thus interfering with the turbulence production cycle and contributing partially to the drag reduction. Associated with the generation of regularized vortices is a significant increase, in the near-wall region, of the mean energy dissipation rate, as inferred from a substantial decrease in the Taylor microscale. This increase also contributes to the drag reduction. The scaling of the drag reduction is also examined empirically, providing valuable insight into the active control of drag reduction.
We examined the spatial distribution pattern and meteorological drivers of dengue fever (DF) in Guangdong Province, China. Annual incidence of DF was calculated for each county between 2005 and 2011 and the geographical distribution pattern of DF was examined using Moran's I statistic and excess risk maps. A time-stratified case-crossover study was used to investigate the short-term relationship between DF and meteorological factors and the Southern Oscillation Index (SOI). High-epidemic DF areas were restricted to the Pearl River Delta region and the Han River Delta region, Moran's I of DF distribution was significant from 2005 to 2006 and from 2009 to 2011. Daily vapour pressure, mean and minimum temperatures were associated with increased DF risk. Maximum temperature and SOI were negatively associated with DF transmission. The risk of DF was non-randomly distributed in the counties in Guangdong Province. Meteorological factors could be important predictors of DF transmission.
By
Arnulf Grubler, International Institute for Applied Systems Analysis, Austria and Yale University,
Xuemei Bai, Australian National University,
Thomas Buettner, United Nations Department of Economic and Social Affairs,
Shobhakar Dhakal, Global Carbon Project and National Institute for Environmental Studies,
David J. Fisk, Imperial College London,
Toshiaki Ichinose, National Institute for Environmental Studies,
James E. Keirstead, Imperial College London,
Gerd Sammer, University of Natural Resources and Applied Life Sciences,
David Satterthwaite, International Institute for Environment and Development,
Niels B. Schulz, International Institute for Applied Systems Analysis, Austria and Imperial College,
Nilay Shah, Imperial College London,
Julia Steinberger, The Institute of Social Ecology, Austria and University of Leeds,
Helga Weisz, Potsdam Institute for Climate Impact Research,
Gilbert Ahamer, University of Graz,
Timothy Baynes, Commonwealth Scientific and Industrial Research Organisation,
Daniel Curtis, Oxford University Centre for the Environment,
Michael Doherty, Commonwealth Scientific and Industrial Research Organisation,
Nick Eyre, Oxford University Centre for the Environment,
Junichi Fujino, National Institute for Environmental Studies,
Keisuke Hanaki, University of Tokyo,
Mikiko Kainuma, National Institute for Environmental Studies,
Shinji Kaneko, Hiroshima University,
Manfred Lenzen, University of Sydney,
Jacqui Meyers, Commonwealth Scientific and Industrial Research Organisation,
Hitomi Nakanishi, University of Canberra,
Victoria Novikova, Oxford University Centre for the Environment,
Krishnan S. Rajan, International Institute of Information Technology,
Seongwon Seo, Commonwealth Scientific and Industrial Research Organisation,
Ram M. Shrestha, Asian Institute of Technology,
Priyadarshi R. Shukla, Indian Institute of Management,
Alice Sverdlik, International Institute for Environment and Development,
Jayant Sathaye, Lawrence Berkeley National Laboratory
More than 50% of the global population already lives in urban settlements and urban areas are projected to absorb almost all the global population growth to 2050, amounting to some additional three billion people. Over the next decades the increase in rural population in many developing countries will be overshadowed by population flows to cities. Rural populations globally are expected to peak at a level of 3.5 billion people by around 2020 and decline thereafter, albeit with heterogeneous regional trends. This adds urgency in addressing rural energy access, but our common future will be predominantly urban. Most of urban growth will continue to occur in small-to medium-sized urban centers. Growth in these smaller cities poses serious policy challenges, especially in the developing world. In small cities, data and information to guide policy are largely absent, local resources to tackle development challenges are limited, and governance and institutional capacities are weak, requiring serious efforts in capacity building, novel applications of remote sensing, information, and decision support techniques, and new institutional partnerships. While ‘megacities’ with more than 10 million inhabitants have distinctive challenges, their contribution to global urban growth will remain comparatively small.
Energy-wise, the world is already predominantly urban. This assessment estimates that between 60–80% of final energy use globally is urban, with a central estimate of 75%. Applying national energy (or GHG inventory) reporting formats to the urban scale and to urban administrative boundaries is often referred to as a ‘production’ accounting approach and underlies the above GEA estimate.
A life-course approach to reduction of risk of non-communicable diseases (NCD) suggests that early-life interventions may be more effective than lifestyle modifications in middle age. Knowledge translation to develop understanding of the Developmental Origins of Health and Disease (DOHaD) within the community offers the potential to encourage informed diet and lifestyle choices supporting reduction of NCD risk in current and future generations. Many women do not make sustained dietary change before or during pregnancy, therefore appropriate nutritional behaviours need to be established prior to adulthood. This makes adolescence an appropriate stage for interventions to establish suitable dietary and lifestyle behaviours. Therefore, we engaged adolescents in a school-based educational intervention, and assessed the value of this in development of understanding of DOHaD concepts to support behaviour change that could lead to NCD risk reduction in the next generation. Modules of course work were written for 11–14 year olds and trialled in nine schools. Matched pre- and post-intervention questionnaire responses from 238 students and 99 parents, and post-intervention interviews evaluated the intervention. Understanding of a link between maternal diet during pregnancy and the health of the foetus in adulthood increased from 46% to 76% following intervention. Post-intervention evidence suggests the programme facilitated discussion of diet, lifestyle and DOHaD concepts in most families. The intervention was effective in improving understanding of DOHaD concepts and in some cases led to appropriate behaviour change. However, the sustainability of these changes remains to be determined through on-going evaluation of attitudes and behaviour within this cohort.
The reversible switching between the amorphous and crystalline phases of Ge2Sb2Te5 (GST) is investigated with ab initio molecular dynamics. We apply different quench rates (-16 K/ps, -5 K/ps, -2 K/ps, and -0.45 K/ps) and different annealing temperatures (500 K, 600 K, 700 K, and 800 K) to amorphize and crystallize GST respectively. Results show that the generated amorphous is strongly dependent on the quench rate. For -16 K/ps and -5 K/ps, generated amorphous samples have different density of crystal seeds, higher in the later. The amorphous structure formed at -2 K/ps contains a single crystalline cluster, while that formed at the quench rate of -0.45 K/ps had sufficient time to completely crystallize the amorphous phase. Annealing the amorphous systems formed at different rates shows that crystallization depends both on the annealing temperature and on the structure of the initial system (i.e., whether or not it contains crystalline clusters or crystal seeds). At 500 K, formation of crystalline clusters occurs readily within a few ps while the rate at which they grow is slow, taking 0.9 ns to complete the crystallization. In contrast, crystalline cluster formation is inhibited at 800 K. In the intermediate temperature range, both crystalline cluster formation and growth occur within a few hundred ps indicating that these temperatures leads to the fastest crystallization. The crystallization of a 63-atom at ∼900 K resulted in a highly relaxed crystal structure showing a clear tendency for separation of Ge and Sb species in layers. This model also indicates a tendency of segregation of vacancies, suggesting that vacancy layering may play a key role in the crystallization process.