We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Background: Eye movements reveal neurodegenerative disease processes due to overlap between oculomotor circuitry and disease-affected areas. Characterizing oculomotor behaviour in context of cognitive function may enhance disease diagnosis and monitoring. We therefore aimed to quantify cognitive impairment in neurodegenerative disease using saccade behaviour and neuropsychology. Methods: The Ontario Neurodegenerative Disease Research Initiative recruited individuals with neurodegenerative disease: one of Alzheimer’s disease, mild cognitive impairment, amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson’s disease, or cerebrovascular disease. Patients (n=450, age 40-87) and healthy controls (n=149, age 42-87) completed a randomly interleaved pro- and anti-saccade task (IPAST) while their eyes were tracked. We explored the relationships of saccade parameters (e.g. task errors, reaction times) to one another and to cognitive domain-specific neuropsychological test scores (e.g. executive function, memory). Results: Task performance worsened with cognitive impairment across multiple diseases. Subsets of saccade parameters were interrelated and also differentially related to neuropsychology-based cognitive domain scores (e.g. antisaccade errors and reaction time associated with executive function). Conclusions: IPAST detects global cognitive impairment across neurodegenerative diseases. Subsets of parameters associate with one another, suggesting disparate underlying circuitry, and with different cognitive domains. This may have implications for use of IPAST as a cognitive screening tool in neurodegenerative disease.
Paleomagnetic secular variation in a portion of the Bonneville Alloformation is compared with secular variation in lacustrine sediments in the Mono Basin, California, and with secular variation in Lake Lahontan sediments in the northwestern Great Basin. The comparison places an age of about 18,000 yr B.P., and a span of 1000 to 3000 yr, on part of a transgressive stage of Lake Bonneville near Delta, Utah, that is coeval with a wet period in the Lahontan Basin.
This study provides a detailed magnetostratigraphy of sediments composing the Cold Creek cataclysmic flood bar in the Pasco Basin, Washington. Our interpretation suggests onset of Missoula floods or similar events prior to 1.1 myr, later than previously suggested by Bjornstad et al. [Bjornstad, B.N., Fecht, K.R., Pluhar, C.J., 2001. Long history of pre-Wisconsin, Ice Age cataclysmic floods: evidence from southeastern Washington State. Journal of Geology 109 (6), 695–713]. Nonetheless these data suggest that Channeled Scabland features formed over a much longer timespan than commonly cited, that continental ice sheets of the early Pleistocene reached as far south as those of the late Pleistocene, and that similar physiography existed in eastern Washington and perhaps Montana to both generate and route Missoula-flood-like events. This study adds paleomagnetic polarity results from 213 new samples of silts and sands derived from nine new drill cores penetrating the Cold Creek cataclysmic flood bar to our previous database of 53 samples from four boreholes, resulting in a much more robust and detailed magnetostratigraphy. Rock magnetic studies on these sediments show pure magnetite to be the predominant remanence-carrying magnetic mineral, ruling out widespread remagnetization by secondary mineralization. The magnetostratigraphy at eastern Cold Creek bar is characterized by a normal polarity interval bracketed by reversed polarities. Equating the normal zone with the Jaramillo subchron (0.99–1.07 myr) affords the simplest correlation to the magnetic polarity timescale. Western Cold Creek bar was likely deposited during the Brunhes chron (0–0.78 myr) since it exhibits mainly normal polarities with only two thin reversed-polarity horizons that we interpret as magnetic excursions during the Brunhes.
A comparison of paleomagnetic secular variation in sediment of Pleistocene Lake Lahontan in the northwestern Great Basin with secular variation in lake sediment in the Mono Basin, California, indicates that Lake Lahontan was in the valley of the Truckee River between Pyramid Lake and Wadsworth, Nevada, from about 19,000 to 13,000 yr B.P. The secular variation in older Lake Lahontan sediment in the Truckee River valley has the general features of secular variation in middle Pleistocene lacustrine sediments near Rye Patch Dam, Nevada, 125 km to the east. On the basis of field mapping and tephrochronology, the sections of older lacustrine sediments are not coeval. The apparent, but erroneous, correlation of those sediments emphasizes the need for multiple dating methods when paleomagnetic secular variation is used to date stratigraphy.
Increasingly, evidence suggests a role for polyphenols in blood glucose control. The objective of this systematic review was to evaluate the effect of polyphenol-rich sources in combination with carbohydrate sources on resulting postprandial glycaemic and insulin responses. A literature search was conducted using Medline, CINHAL and Web of Science databases. Selected studies included randomised controlled trials in which the association of polyphenol-containing food or beverage consumption with a carbohydrate source and effect on acute postprandial glycaemia and/or insulin was reported. A total of thirteen full articles were included in the review. Polyphenol sources included coffee, black tea, fruit juice, plant extracts, berries and different rye breads, and carbohydrate sources included bread, pancakes and simple sugars such as sucrose, glucose and fructose. Although glycaemic and insulin responses differed depending on the polyphenol–carbohydrate combination, overall, polyphenol sources were shown to reduce the peak and early-phase glycaemic response and maintain the glycaemic response in the later stages of digestion. To a lesser extent, polyphenol sources were also shown to reduce peak insulin response and sustain the insulin response, especially when consumed with bread. This review supports epidemiological data suggesting that polyphenols in foods and beverages may have a beneficial effect on reducing the risk of type 2 diabetes. However, the extent of this effect is variable depending on the polyphenol and carbohydrate source.
The SMC is now known to contain many more transient X-ray pulsars than would be expected based on a simple scaling of the number of such sources in the Galaxy by the relative mass of the SMC. We have been conducting regular monitoring observations of the SMC with the Proportional Counter Array on the Rossi X-ray Timing Explorer since 1997. This has resulted in the discovery of many of these X-ray pulsars and also provided orbital period measurements from detections of regular outbursts. We can now investigate the differences and similarities of the Galactic and SMC X-ray pulsar populations and consider the origin of the huge SMC X-ray pulsar over-abundance.
A significant number of X-ray binaries are now known to exhibit long-term periodicities on timescales of ~10 - 100 days. Several physical mechanisms have been proposed that give rise to such periodicities, one of which is radiation-driven warping and precession of the accretion disk. Recent theoretical work predicts the stability to disk warping as a, function of the mass ratio, binary radius, viscosity and accretion efficiency. We investigate the stability of the superorbital periodicities in the neutron star X-ray binaries Cyg X-2, LMC X-4, SMC X-l and Her X-l, and thereby confront stability predictions with observation. We find that the period and nature of the superorbital variations in these sources is consistent with the predictions of warping theory.
For the purposes of a high-resolution multi-disciplinary study of the Upper Jurassic
Kimmeridge Clay Formation, two boreholes were drilled at Swanworth Quarry and one at
Metherhills, south Dorset, UK. Together, the cores represent the first complete section through the
entire formation close to the type section. We present graphic logs that record the stratigraphy of the
cores, and outline the complementary geophysical and analytical data sets (gamma ray, magnetic susceptibility,
total organic carbon, carbonate, δ13Corg). Of particular note are the new borehole data
from the lowermost part of the formation which does not crop out in the type area. Detailed logs are
available for download from the Kimmeridge Drilling Project web-site at http://kimmeridge.earth.ox.ac.uk/.
Of further interest is a mid-eudoxus Zone positive shift in the δ13Corg record, a feature
that is also registered in Tethyan carbonate successions, suggesting that it is a regional event and may
therefore be useful for correlation. The lithostratigraphy of the cores has been precisely correlated with
the nearby cliff section, which has also been examined and re-described. Magnetic-susceptibility and
spectral gamma-ray measurements were made at a regular spacing through the succession, and facilitate
core-to-exposure correlation. The strata of the exposure and core have been subdivided into four
main mudrock lithological types: (a) medium-dark–dark-grey marl; (b) medium-dark–dark
grey–greenish black shale; (c) dark-grey–olive-black laminated shale; (d) greyish-black–brownish-black
mudstone. The sections also contain subordinate amounts of siltstone, limestone and dolostone.
Comparison of the type section with the cores reveals slight lithological variation and notable thickness
differences between the coeval strata. The proximity of the boreholes and different parts of the
type section to the Purbeck–Isle of Wight Disturbance is proposed as a likely control on the thickness
changes.