We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
OBJECTIVES/GOALS: #NAME? METHODS/STUDY POPULATION: Cell culture & protein identification: human T cells were purified from healthy blood, then activated & cultured for 5d. CAR-T cells were collected from infusion bags of cancer patients undergoing CAR-T. Silver staining of naive & activated healthy T-cell lysates was compared; B-II spectrin was upregulated and confirmed by Western blot. Migration assays: naive & activated T-cells were imaged during migration on ICAM-1 and ICAM-1 + CXCL12 coated plates. T-cells were transfected with BII-spectrin cDNA & the chemokine dependence of migration was compared with controls. In-vivo studies: in a melanoma mouse model, BII-spectrin transfected or control T-cells were injected; tumors were followed with serial imaging. Human patient records were examined to correlate endogenous BII-spectrin levels and CAR-T response. RESULTS/ANTICIPATED RESULTS: Activated T-cells downregulate the cytoskeletal protein B-II spectrin compared to naive cells, leading to chemokine-independent migration in in vitro assays and off-target trafficking when CAR-T cells are given in vivo. Restoration of B-II spectrin levels via transfection restores chemokine-dependence of activated T-cells. In a mouse melanoma model, control mice injected with standard activated T-cells showed fewer cells in the tumor site and more cells in the off-target organs (spleen, lungs) when compared to mice injected with B-II spectrin transfected cells. Furthermore, among 3 human patients undergoing CAR-T therapy, those with higher endogenous B-II spectrin levels experienced fewer side-effects, measured by the neurotoxicity and cytokine release syndrome grades. DISCUSSION/SIGNIFICANCE: A major hurdle to widespread CAR-T therapy for cancer is significant, often fatal side-effects. Our work shows that the protein B-II spectrin is downregulated during CAR-T production, and that restoring B-II spectrin levels decreases side-effects while increasing tumor clearance--hopefully translating to better CAR-T regimens for the future.
Olfactory reference syndrome (ORS) is a delusion in which a person believes that he or she exudes a displeasing body aroma that others perceive negatively. The axilla has been reported as a single primary source in only one patient. Furthermore, ORS is rarely reported to be associated with food odor. In these instances, the food is not edible. Delusions of ORS presenting as alliaceous edible food aromas have not heretofore been described.
Case Report
One week after undergoing catheter ablation for atrial fibrillation, this 42-year-old right-handed male experienced a sudden onset of loss of smell and taste. This has persisted on presentation and he described a complete lack of smell, only being able to smell different spices and herbs. Over time, his sense of smell selectively improved such that he was able to smell alliaceous substances, including onion and garlic, as well as a few other aromas. At the same time his smell returned, he noted that his own body exuded a smell of garlic. This occurred especially while weightlifting at the gym. He noticed that the shirts he had worn working out, in the axillary regions, were encumbered with a garlic/onion miasma. He was fearful that this mephitic aroma was being secreted through his armpits, and that others would recognize his tragomaschalia. As a result, he restricted his activities. Over a few months, his smell ability gradually worsened back to the condition he was in after the ablation. Coincident with this, his perception that he was exuding an alliaceous aroma resolved.
Results
Motor examination: Drift testing: mild left pronator drift. Left abductor digiti minimal sign. Olfactory testing prior to the development of ORS: Alcohol Sniff Test (AST): 0 (anosmia). Brief Smell Identification Test (B-SIT): 3 (anosmia). Olfactory testing during ORS: AST: 16 (hyposmia). B-SIT: 9 (hyposmia). Olfactory testing after resolution of ORS: AST: 0 (anosmia).
Discussion
This could be explained by a physiologic axillary odor or malodor, which he could not detect before or after the ORS. During the ORS, the odor may have been misperceived in a dysosmic manner due to his underlying olfactory deficit. Such dysosmia may have then been interpreted as the aroma of an alliaceous vegetable. The intensity of the aroma may have been greatest at the axillary area if compared to the other sources, but due to his underlying hyposmia, he was able to perceive only the axilla as a sole source of the aroma. Besides, psychodynamic preoccupation with bodily physique may have explained his hypersensitivity to minor flaws and his excessive preoccupation with possible harassment from others. He may have consequently misinterpreted individuals’ benign observations and attitudes to presume the presence of aroma. In individuals with olfactory deficit, this investigation for the presence of ORS with traditionally unpleasant food aromas or the presence of ORS in those with chemosensory dysfunction is warranted.
Racial and ethnic groups in the USA differ in the prevalence of posttraumatic stress disorder (PTSD). Recent research however has not observed consistent racial/ethnic differences in posttraumatic stress in the early aftermath of trauma, suggesting that such differences in chronic PTSD rates may be related to differences in recovery over time.
Methods
As part of the multisite, longitudinal AURORA study, we investigated racial/ethnic differences in PTSD and related outcomes within 3 months after trauma. Participants (n = 930) were recruited from emergency departments across the USA and provided periodic (2 weeks, 8 weeks, and 3 months after trauma) self-report assessments of PTSD, depression, dissociation, anxiety, and resilience. Linear models were completed to investigate racial/ethnic differences in posttraumatic dysfunction with subsequent follow-up models assessing potential effects of prior life stressors.
Results
Racial/ethnic groups did not differ in symptoms over time; however, Black participants showed reduced posttraumatic depression and anxiety symptoms overall compared to Hispanic participants and White participants. Racial/ethnic differences were not attenuated after accounting for differences in sociodemographic factors. However, racial/ethnic differences in depression and anxiety were no longer significant after accounting for greater prior trauma exposure and childhood emotional abuse in White participants.
Conclusions
The present findings suggest prior differences in previous trauma exposure partially mediate the observed racial/ethnic differences in posttraumatic depression and anxiety symptoms following a recent trauma. Our findings further demonstrate that racial/ethnic groups show similar rates of symptom recovery over time. Future work utilizing longer time-scale data is needed to elucidate potential racial/ethnic differences in long-term symptom trajectories.
Poor mental health is a state of psychological distress that is influenced by lifestyle factors such as sleep, diet, and physical activity. Compulsivity is a transdiagnostic phenotype cutting across a range of mental illnesses including obsessive–compulsive disorder, substance-related and addictive disorders, and is also influenced by lifestyle. Yet, how lifestyle relates to compulsivity is presently unknown, but important to understand to gain insights into individual differences in mental health. We assessed (a) the relationships between compulsivity and diet quality, sleep quality, and physical activity, and (b) whether psychological distress statistically contributes to these relationships.
Methods
We collected harmonized data on compulsivity, psychological distress, and lifestyle from two independent samples (Australian n = 880 and US n = 829). We used mediation analyses to investigate bidirectional relationships between compulsivity and lifestyle factors, and the role of psychological distress.
Results
Higher compulsivity was significantly related to poorer diet and sleep. Psychological distress statistically mediated the relationship between poorer sleep quality and higher compulsivity, and partially statistically mediated the relationship between poorer diet and higher compulsivity.
Conclusions
Lifestyle interventions in compulsivity may target psychological distress in the first instance, followed by sleep and diet quality. As psychological distress links aspects of lifestyle and compulsivity, focusing on mitigating and managing distress may offer a useful therapeutic approach to improve physical and mental health. Future research may focus on the specific sleep and diet patterns which may alter compulsivity over time to inform lifestyle targets for prevention and treatment of functionally impairing compulsive behaviors.
We have developed the bispectral electroencephalography (BSEEG) method for detection of delirium and prediction of poor outcomes.
Aims
To improve the BSEEG method by introducing a new EEG device.
Method
In a prospective cohort study, EEG data were obtained and BSEEG scores were calculated. BSEEG scores were filtered on the basis of standard deviation (s.d.) values to exclude signals with high noise. Both non-filtered and s.d.-filtered BSEEG scores were analysed. BSEEG scores were compared with the results of three delirium screening scales: the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU), the Delirium Rating Scale-Revised-98 (DRS) and the Delirium Observation Screening Scale (DOSS). Additionally, the 365-day mortalities and the length of stay (LOS) in the hospital were analysed.
Results
We enrolled 279 elderly participants and obtained 620 BSEEG recordings; 142 participants were categorised as BSEEG-positive, reflecting slower EEG activity. BSEEG scores were higher in the CAM-ICU-positive group than in the CAM-ICU-negative group. There were significant correlations between BSEEG scores and scores on the DRS and the DOSS. The mortality rate of the BSEEG-positive group was significantly higher than that of the BSEEG-negative group. The LOS of the BSEEG-positive group was longer compared with that of the BSEEG-negative group. BSEEG scores after s.d. filtering showed stronger correlations with delirium screening scores and more significant prediction of mortality.
Conclusions
We confirmed the usefulness of the BSEEG method for detection of delirium and of delirium severity, and prediction of patient outcomes with a new EEG device.
There is a paucity of evidence about the prevalence and risk factors for symptomatic infection among children. This study aimed to describe the prevalence of symptomatic coronavirus disease 2019 (COVID-19) and its risk factors in children and adolescents aged 0–18 years in Qatar. We conducted a cross-sectional study of all children aged 0–18 years diagnosed with COVID-19 using polymerase chain reaction in Qatar during the period 1st March to 31st July 2020. A generalised linear model with a binomial family and identity link was used to assess the association between selected factors and the prevalence of symptomatic infection. A total of 11 445 children with a median age of 8 years (interquartile range (IQR) 3–13 years) were included in this study. The prevalence of symptomatic COVID-19 was 36.6% (95% confidence interval (CI) 35.7–37.5), and it was similar between children aged <5 years (37.8%), 5–9 years (34.3%) and 10 + years (37.3%). The most frequently reported symptoms among the symptomatic group were fever (73.5%), cough (34.8%), headache (23.2%) and sore throat (23.2%). Fever (82.8%) was more common in symptomatic children aged <5 years, while cough (38.7%) was more prevalent in those aged 10 years or older, compared to other age groups. Variables associated with an increased risk of symptomatic infection were; contact with confirmed cases (RD 0.21; 95% CI 0.20–0.23; P = 0.001), having visited a health care facility (RD 0.54; 95% CI 0.45–0.62; P = 0.001), and children aged under 5 years (RD 0.05; 95% CI 0.02–0.07; P = 0.001) or aged 10 years or older (RD 0.04; 95% CI 0.02–0.06; P = 0.001). A third of the children with COVID-19 were symptomatic with a higher proportion of fever in very young children and a higher proportion of cough in those between 10 and 18 years of age.
Schizophrenia has been primarily conceptualized as a disorder of high-order cognitive functions with deficits in executive brain regions. Yet due to the increasing reports of early sensory processing deficit, recent models focus more on the developmental effects of impaired sensory process on high-order functions. The present study examined whether this pathological interaction relates to an overarching system-level imbalance, specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks.
Methods
We applied a novel combination of connectome gradient and stepwise connectivity analysis to resting-state fMRI to characterize the sensorimotor-to-transmodal cortical hierarchy organization (96 patients v. 122 controls).
Results
We demonstrated compression of the cortical hierarchy organization in schizophrenia, with a prominent compression from the sensorimotor region and a less prominent compression from the frontal−parietal region, resulting in a diminished separation between sensory and fronto-parietal cognitive systems. Further analyses suggested reduced differentiation related to atypical functional connectome transition from unimodal to transmodal brain areas. Specifically, we found hypo-connectivity within unimodal regions and hyper-connectivity between unimodal regions and fronto-parietal and ventral attention regions along the classical sensation-to-cognition continuum (voxel-level corrected, p < 0.05).
Conclusions
The compression of cortical hierarchy organization represents a novel and integrative system-level substrate underlying the pathological interaction of early sensory and cognitive function in schizophrenia. This abnormal cortical hierarchy organization suggests cascading impairments from the disruption of the somatosensory−motor system and inefficient integration of bottom-up sensory information with attentional demands and executive control processes partially account for high-level cognitive deficits characteristic of schizophrenia.
To examine associations between maternal characteristics and feeding styles in Caribbean mothers.
Design:
Participants were mother–child pairs enrolled in a cluster randomised trial of a parenting intervention in three Caribbean islands. Maternal characteristics were obtained by questionnaires when infants were 6–8 weeks old. Items adapted from the Toddler Feeding Behaviour Questionnaire were used to assess infant feeding styles at the age of 1 year. Feeding styles were identified using factor analysis and associations with maternal characteristics assessed using multilevel linear regression.
Setting:
Health clinics in St. Lucia (n 9), Antigua (n 10) and Jamaica (n 20).
Participants:
A total of 405 mother–child pairs from the larger trial.
Results:
Maternal depressive symptoms were associated with uninvolved (β = 0·38, 95 % CI (0·14, 0·62)), restrictive (β = 0·44, 95 % CI (0·19, 0·69)) and forceful (β = 0·31, 95 % CI (0·06, 0·57)) feeding and inversely associated with responsive feeding (β = −0·30, 95 % CI (−0·56, −0·05)). Maternal vocabulary was inversely associated with uninvolved (β = −0·31, 95 % CI (−0·57, −0·06)), restrictive (β = −0·30, 95 % CI (−0·56, −0·04)), indulgent (β = −0·47, 95 % CI (−0·73, −0·21)) and forceful (β = −0·54, 95 % CI (−0·81, −0·28)) feeding. Indulgent feeding was negatively associated with socio-economic status (β = −0·27, 95 % CI (−0·53, −0·00)) and was lower among mothers ≥35 years (β = −0·32, 95 % CI (−0·62, −0·02)). Breast-feeding at 1 year was associated with forceful feeding (β = 0·41, 95 % CI (0·21, 0·61)). No significant associations were found between maternal education, BMI, occupation and feeding styles.
Conclusion:
Services to identify and assist mothers with depressive symptoms may benefit infant feeding style. Interventions to promote responsive feeding may be important for less educated, younger and socio-economically disadvantaged mothers.
The global total-$f$ gyrokinetic particle-in-cell code XGC, used to study transport in magnetic fusion plasmas or to couple with a core gyrokinetic code while functioning as an edge gyrokinetic code, implements a five-dimensional continuum grid to perform the dissipative operations, such as plasma collisions, or to exchange the particle distribution function information with a core code. To transfer the distribution function between marker particles and a rectangular two-dimensional velocity-space grid, XGC employs a bilinear mapping. The conservation of particle density and momentum is accurate enough in this bilinear operation, but the error in the particle energy conservation can become undesirably large and cause non-negligible numerical heating in a steep edge pedestal. In the present work we update XGC to use a novel mapping technique, based on the calculation of a pseudo-inverse, to exactly preserve moments up to the order of the discretization space. We describe the details of the implementation and we demonstrate the reduced interpolation error for a tokamak test plasma using first- and second-order elements with the pseudo-inverse method and comparing with the bilinear mapping.
Genetic susceptibility to late maturity alpha-amylase (LMA) in wheat (Triticum aestivum L.) results in increased alpha-amylase activity in mature grain when cool conditions occur during late grain maturation. Farmers are forced to sell wheat grain with elevated alpha-amylase at a discount because it has an increased risk of poor end-product quality. This problem can result from either LMA or preharvest sprouting, grain germination on the mother plant when rain occurs before harvest. Whereas preharvest sprouting is a well-understood problem, little is known about the risk LMA poses to North American wheat crops. To examine this, LMA susceptibility was characterized in a panel of 251 North American hard spring wheat lines, representing ten geographical areas. It appears that there is substantial LMA susceptibility in North American wheat since only 27% of the lines showed reproducible LMA resistance following cold-induction experiments. A preliminary genome-wide association study detected six significant marker-trait associations. LMA in North American wheat may result from genetic mechanisms similar to those previously observed in Australian and International Maize and Wheat Improvement Center (CIMMYT) germplasm since two of the detected QTLs, QLMA.wsu.7B and QLMA.wsu.6B, co-localized with previously reported loci. The Reduced height (Rht) loci also influenced LMA. Elevated alpha-amylase levels were significantly associated with the presence of both wild-type and tall height, rht-B1a and rht-D1a, loci in both cold-treated and untreated samples.
An encoder–decoder neural network has been used to examine the possibility for acceleration of a partial integro-differential equation, the Fokker–Planck–Landau collision operator. This is part of the governing equation in the massively parallel particle-in-cell code XGC, which is used to study turbulence in fusion energy devices. The neural network emphasizes physics-inspired learning, where it is taught to respect physical conservation constraints of the collision operator by including them in the training loss, along with the $\ell _2$ loss. In particular, network architectures used for the computer vision task of semantic segmentation have been used for training. A penalization method is used to enforce the ‘soft’ constraints of the system and integrate error in the conservation properties into the loss function. During training, quantities representing the particle density, momentum and energy for all species of the system are calculated at each configuration vertex, mirroring the procedure in XGC. This simple training has produced a median relative loss, across configuration space, of the order of $10^{-4}$, which is low enough if the error is of random nature, but not if it is of drift nature in time steps. The run time for the current Picard iterative solver of the operator is $O(n^2)$, where $n$ is the number of plasma species. As the XGC1 code begins to attack problems including a larger number of species, the collision operator will become expensive computationally, making the neural network solver even more important, especially since its training only scales as $O(n)$. A wide enough range of collisionality has been considered in the training data to ensure the full domain of collision physics is captured. An advanced technique to decrease the losses further will be subject of a subsequent report. Eventual work will include expansion of the network to include multiple plasma species.
This chapter uses evidence from the Parenting across Cultures (PAC) project to illustrate ways in which longitudinal data can help achieve the Sustainable Development Goals (SDGs; https://sustainabledevelopment.un.org/). The chapter begins by providing an overview of the research questions that have guided PAC as well as a description of the participants, procedures and measures. Next, empirical findings from PAC are summarized to illustrate implications for six specific SDGs. Then the chapter describes how longitudinal data offer advantages over cross-sectional data in operationalizing SDG targets and implementing the SDGs. Finally, limitations, future research directions and conclusions are provided.
PAC was developed in response to concerns that understanding of parenting and child development was biased by the predominant focus in the literature on studying families in Western, educated, industrialized, rich and democratic (WEIRD) societies and that findings in such countries may not generalize well to more diverse populations around the world (Henrich et al, 2010). In an analysis of the sample characteristics in the most influential journals in six subdisciplines of psychology from 2003 to 2007, 96% of research participants were from Western industrialized countries, and 68% were from the United States alone (Arnett, 2008), which means that 96% of research participants in these psychological studies were from countries with only 12% of the world's population (Henrich et al, 2010). When basic science research is limited to WEIRD countries, knowledge of human development becomes defined by a set of experiences that may not be widely shared in different cultural contexts, so studying parenting and child development in a wide range of diverse cultural contexts is important to understand development more fully.
PAC has been conceptualized and funded as a consecutive series of three five-year grants, each covering a different developmental period and guided by different research questions. In the first project period, participants were aged 8 to 12. The main research questions focused on cultural differences in links between discipline and child adjustment, warmth as a moderator of links between harsh discipline and child outcomes, and cognitive and emotional mediators of effects of harsh discipline on children's aggression and anxiety. In the second period, target participants were 13 to 17 years old.
Bipolar disorder is associated with premature mortality, but evidence is mostly derived from Western countries. There has been no research evaluating shortened lifespan in bipolar disorder using life-years lost (LYLs), which is a recently developed mortality metric taking into account illness onset for life expectancy estimation. The current study aimed to examine the extent of premature mortality in bipolar disorder patients relative to the general population in Hong Kong (HK) in terms of standardised mortality ratio (SMR) and excess LYLs, and changes of mortality rate over time.
Methods
This population-based cohort study investigated excess mortality in 12 556 bipolar disorder patients between 2008 and 2018, by estimating all-cause and cause-specific SMRs, and LYLs. Trends in annual SMRs over the 11-year study period were assessed. Study data were retrieved from a territory-wide medical-record database of HK public healthcare services.
Results
Patients had higher all-cause [SMR: 2.60 (95% CI: 2.45–2.76)], natural-cause [SMR: 1.90 (95% CI: 1.76–2.05)] and unnatural-cause [SMR: 8.63 (95% CI: 7.34–10.03)] mortality rates than the general population. Respiratory diseases, cardiovascular diseases and cancers accounted for the majority of deaths. Men and women with bipolar disorder had 6.78 (95% CI: 6.00–7.84) years and 7.35 (95% CI: 6.75–8.06) years of excess LYLs, respectively. The overall mortality gap remained similar over time, albeit slightly improved in men with bipolar disorder.
Conclusions
Bipolar disorder is associated with increased premature mortality and substantially reduced lifespan in a predominantly Chinese population, with excess deaths mainly attributed to natural causes. Persistent mortality gap underscores an urgent need for targeted interventions to improve physical health of patients with bipolar disorder.
Brief measurements of the subjective experience of stress with good predictive capability are important in a range of community mental health and research settings. The potential for large-scale implementation of such a measure for screening may facilitate early risk detection and intervention opportunities. Few such measures however have been developed and validated in epidemiological and longitudinal community samples. We designed a new single-item measure of the subjective level of stress (SLS-1) and tested its validity and ability to predict long-term mental health outcomes of up to 12 months through two separate studies.
Methods
We first examined the content and face validity of the SLS-1 with a panel consisting of mental health experts and laypersons. Two studies were conducted to examine its validity and predictive utility. In study 1, we tested the convergent and divergent validity as well as incremental validity of the SLS-1 in a large epidemiological sample of young people in Hong Kong (n = 1445). In study 2, in a consecutively recruited longitudinal community sample of young people (n = 258), we first performed the same procedures as in study 1 to ensure replicability of the findings. We then examined in this longitudinal sample the utility of the SLS-1 in predicting long-term depressive, anxiety and stress outcomes assessed at 3 months and 6 months (n = 182) and at 12 months (n = 84).
Results
The SLS-1 demonstrated good content and face validity. Findings from the two studies showed that SLS-1 was moderately to strongly correlated with a range of mental health outcomes, including depressive, anxiety, stress and distress symptoms. We also demonstrated its ability to explain the variance explained in symptoms beyond other known personal and psychological factors. Using the longitudinal sample in study 2, we further showed the significant predictive capability of the SLS-1 for long-term symptom outcomes for up to 12 months even when accounting for demographic characteristics.
Conclusions
The findings altogether support the validity and predictive utility of the SLS-1 as a brief measure of stress with strong indications of both concurrent and long-term mental health outcomes. Given the value of brief measures of mental health risks at a population level, the SLS-1 may have potential for use as an early screening tool to inform early preventative intervention work.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
The Spoon-billed Sandpiper Calidris pygmaea is a ‘Critically Endangered’ migratory shorebird. The species faces an array of threats in its non-breeding range, making conservation intervention essential. However, conservation efforts are reliant on identifying the species’ key stopover and wintering sites. Using Maximum Entropy models, we predicted Spoon-billed Sandpiper distribution across the non-breeding range, using data from recent field surveys and satellite tracking. Model outputs suggest only a limited number of stopover sites are suitable for migrating birds, with sites in the Yellow Sea and on the Jiangsu coast in China highlighted as particularly important. All the previously known core wintering sites were identified by the model including the Ganges-Brahmaputra Delta, Nan Thar Island and the Gulf of Mottama. In addition, the model highlighted sites subsequently found to be occupied, and pinpointed potential new sites meriting investigation, notably on Borneo and Sulawesi, and in parts of India and the Philippines. A comparison between the areas identified as most likely to be occupied and protected areas showed that very few locations are covered by conservation designations. Known sites must be managed for conservation as a priority, and potential new sites should be surveyed as soon as is feasible to assess occupancy status. Site protection should take place in concert with conservation interventions including habitat management, discouraging hunting, and fostering alternative livelihoods.
There has been little research investigating how mode of input affects incidental vocabulary learning, and no study examining how it affects the learning of multiword items. The aim of this study was to investigate incidental learning of L2 collocations in three different modes: reading, listening, and reading while listening. One hundred thirty-eight second-year college students learning EFL in Taiwan were randomly assigned to three experimental groups (reading, listening, reading while listening) and a no treatment control group. The experimental groups encountered 17 target collocations in the same graded reader. Learning was measured using two tests that involved matching the component words and recalling their meanings. The results indicated that the reading while listening condition was most effective while the reading and listening conditions contributed to similarly sized gains. The findings suggest that listening may play a more important role in learning collocations than single-word items.
By the end of their first year, infants can interpret many different types of complex dynamic visual events, such as caused-motion, chasing, and goal-directed action. Infants of this age are also in the early stages of vocabulary development, producing their first words at around 12 months. The present work examined whether there are meaningful individual differences in infants’ ability to represent dynamic causal events in visual scenes, and whether these differences influence vocabulary development. As part of the longitudinal Language 0–5 Project, 78 10-month-old infants were tested on their ability to interpret three dynamic motion events, involving (a) caused-motion, (b) chasing behaviour, and (c) goal-directed movement. Planned analyses found that infants showed evidence of understanding the first two event types, but not the third. Looking behaviour in each task was not meaningfully related to vocabulary development, nor were there any correlations between the tasks. The results of additional exploratory analyses and simulations suggested that the infants’ understanding of each event may not be predictive of their vocabulary development, and that looking times in these tasks may not be reliably capturing any meaningful individual differences in their knowledge. This raises questions about how to convert experimental group designs to individual differences measures, and how to interpret infant looking time behaviour.