We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chickpea is a cool season, photothermal-sensitive crop, that is adversely affected by high temperatures (>35°C) and whose flowering is promoted by long-day conditions (>12 h). This prevents horizontal crop spread under a variety of agro-climatic conditions and the development of insensitive genotypes that perform well in all seasons. Therefore, a study was conducted to identify genotypes that are mature early, insensitive to photoperiod, high temperature and tolerant to drought stress. A set of 74 genotypes was evaluated under rainfed conditions in Kharif 2021 (off-season) to select eight promising early-maturing genotypes with high-yielding capacity. Then further investigations were conducted in five different seasons Late Kharif 2021, rabi 2021, summer 2022, early Kharif 2022 and Kharif 2022 to identify the genotypes with photothermo-insensitivity among the selected eight genotypes. With the exception of rabi 2021, each of these seasons were distinct from the chickpea's typical growing season. Among these eight, the stable genotypes which are performed better in all the seasons, especially in summer were considered, such as IPC 06-11, MNK-1, JG-14 and ICE 15654-A as a photothermo-insensitive, were able to flower and set pods with higher seed yield and, resulting in early maturity in a temperature range of 41.4/9.3°C with photoperiods of 13.1/10.9 h to reach in all seasons throughout the year. The heritability was more than 60%. Hence, these genotypes can be used as donor aids in the development of early maturing, drought stress tolerant and photothermo-insensitive chickpea.
The past 10 years have brought paradigm-shifting changes to clinical microbiology. This paper explores the top 10 transformative innovations across the diagnostic spectrum, including not only state of the art technologies but also preanalytic and post-analytic advances. Clinical decision support tools have reshaped testing practices, curbing unnecessary tests. Innovations like broad-range polymerase chain reaction and metagenomic sequencing, whole genome sequencing, multiplex molecular panels, rapid phenotypic susceptibility testing, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry have all expanded our diagnostic armamentarium. Rapid home-based testing has made diagnostic testing more accessible than ever. Enhancements to clinician-laboratory interfaces allow for automated stewardship interventions and education. Laboratory restructuring and consolidation efforts are reshaping the field of microbiology, presenting both opportunities and challenges for the future of clinical microbiology laboratories. Here, we review key innovations of the last decade.
The International VLBI Service for Geodesy and Astrometry (IVS) regularly provides high-quality data to produce Earth Orientation Parameters (EOP), and for the maintenance and realisation of the International Terrestrial and Celestial Reference Frames, ITRF and ICRF. The first iteration of the celestial reference frame (CRF) at radio wavelengths, the ICRF1, was adopted by the International Astronomical Union (IAU) in 1997 to replace the FK5 optical frame. Soon after, the IVS began official operations and in 2009 there was a significant increase in data sufficient to warrant a second iteration of the CRF, ICRF2. The most recent ICRF3, was adopted by the IAU in 2018. However, due to the geographic distribution of observing stations being concentrated in the Northern hemisphere, CRFs are generally weaker in the South due to there being fewer Southern Hemisphere observations. To increase the Southern Hemisphere observations, and the density, precision of the sources, a series of deep South observing sessions was initiated in 1995. This initiative in 2004 became the IVS Celestial Reference Frame Deep South (IVS-CRDS) observing programme. This paper covers the evolution of the CRDS observing programme for the period 1995–2021, details the data products and results, and concludes with a summary of upcoming improvements to this ongoing project.
Several hypotheses may explain the association between substance use, posttraumatic stress disorder (PTSD), and depression. However, few studies have utilized a large multisite dataset to understand this complex relationship. Our study assessed the relationship between alcohol and cannabis use trajectories and PTSD and depression symptoms across 3 months in recently trauma-exposed civilians.
Methods
In total, 1618 (1037 female) participants provided self-report data on past 30-day alcohol and cannabis use and PTSD and depression symptoms during their emergency department (baseline) visit. We reassessed participant's substance use and clinical symptoms 2, 8, and 12 weeks posttrauma. Latent class mixture modeling determined alcohol and cannabis use trajectories in the sample. Changes in PTSD and depression symptoms were assessed across alcohol and cannabis use trajectories via a mixed-model repeated-measures analysis of variance.
Results
Three trajectory classes (low, high, increasing use) provided the best model fit for alcohol and cannabis use. The low alcohol use class exhibited lower PTSD symptoms at baseline than the high use class; the low cannabis use class exhibited lower PTSD and depression symptoms at baseline than the high and increasing use classes; these symptoms greatly increased at week 8 and declined at week 12. Participants who already use alcohol and cannabis exhibited greater PTSD and depression symptoms at baseline that increased at week 8 with a decrease in symptoms at week 12.
Conclusions
Our findings suggest that alcohol and cannabis use trajectories are associated with the intensity of posttrauma psychopathology. These findings could potentially inform the timing of therapeutic strategies.
The multiscale dynamics of a shock–droplet interaction is crucial in understanding the atomisation of droplets due to external airflow. The interaction phenomena are classified into wave dynamics (stage I) and droplet breakup dynamics (stage II). Stage I involves the formation of different wave structures after an incident shock impacts the droplet surface. These waves momentarily change the droplet's ambient conditions, while in later times they are mainly influenced by shock-induced airflow. Stage II involves induced airflow interaction with the droplet that leads to its deformation and breakup. Primarily, two modes of droplet breakup, i.e. shear-induced entrainment and Rayleigh–Taylor piercing (RTP) (based on the modes of surface instabilities) were observed for the studied range of Weber numbers $(We\sim 30\text{--}15\,000)$. A criterion for the transition between two breakup modes is obtained, which successfully explains the observation of RTP mode of droplet breakup at high Weber numbers $(We\sim 800)$. For $We > 1000$, the breakup dynamics is governed by the shear-induced surface waves. After formation, the Kelvin–Helmholtz waves travel on the droplet surface and merge to form a liquid sheet near the droplet equator. Henceforth, the liquid sheet undergoes breakup processes via nucleation of several holes. The breakup process is recurrent until the complete droplet disintegrates or external drag acting on the droplet is insufficient for further disintegration. At lower Weber numbers, the droplet undergoes complete deformation like a flattened disk, and a multibag mode of breakup based on RTP is observed.
To improve the quality of physical health care of patients on antipsychotics.
The second purpose of our study was to look at the administrative and clinical issues that hinders physical health assessment in outpatient clinics.
Background:
Severe mental illness (SMI) is associated with high risk of physical co-morbidity and mortality and as such is a major public health concern.
Methodology:
Current guidelines are described, and adherence to the standards is audited
Retrospective case note audit.
New patients seen in the outpatient Clinic between January 06 – August 06 and were prescribed antipsychotics were included in the study.
Results:
The audit included 30 patients, seen in the Collingwood Court Outpatient clinic between February 06 – August 06. The majority of patients were male (59%) and were between the age group 30 – 49.Depression was the main diagnosis (10 patients) closely followed by Bipolar Affective Disorder & Psychosis. Out of the 30 Patients, no patient had complete base line investigation. Only 13(43%) patients has some investigation and of this only 10 (33%) had the results recorded in the notes. In around 50% of the patients there was request made to the GP for this investigations but no further corresponded from the GP or any records of this being done was noted in the notes. No patients has BMI or BP monitoring done at any time
Conclusions:
This audit identifies shortcoming in physical health monitoring and possible reasons.
Spain has experienced one of the deepest recessions among European countries affected by the economic crisis. We investigated the effects of the recession on the frequency of mental disorders in Primary Care (PC).
A group of PC physicians selected into the study a random sample of patients attending primary care centres. These patients were administered the PRIME-MD for the assessment of mental disorders, in 2006 and again in 2010, before and during the financial crisis. Multivariate logistic regression models were used to assess the relationship of unemployment, mortgage payment difficulties, and eviction on risks of mental health disorders.
Compared with the pre-crisis period of 2006, the 2010 survey revealed substantial increases in the proportion of patients with mood, anxiety, somatoform, and alcohol-related disorders (p< 0.0001), but not in eating disorders (p = 0.172). Major depression (19.4% increase) and dysthymia (10.8), showed the greatest rise, followed generalized anxiety disorder (8.4) and panic attack disorder (7.3). Both alcohol dependence and alcohol abuse rose significantly, by 4.6% and 2.4% (OR = 11.6 and 4.5, p< 0.001), respectively. After correcting for the risks of unemployment, we observed a significant rise in attendance with depression associated with mortgage repayment difficulties (OR =2.12, p< 0.001) and evictions (OR = 2.95, p< 0.001).
Recession has significantly increased the frequency of mental health disorders, particularly among families experiencing unemployment and mortgage payment difficulties. Expanding mental health services in primary care settings to at-risk groups may help cope with rising mental health disorders in areas affected by recession.
Space Infrared Telescope for Cosmology and Astrophysics (SPICA), the cryogenic infrared space telescope recently pre-selected for a ‘Phase A’ concept study as one of the three remaining candidates for European Space Agency (ESA's) fifth medium class (M5) mission, is foreseen to include a far-infrared polarimetric imager [SPICA-POL, now called B-fields with BOlometers and Polarizers (B-BOP)], which would offer a unique opportunity to resolve major issues in our understanding of the nearby, cold magnetised Universe. This paper presents an overview of the main science drivers for B-BOP, including high dynamic range polarimetric imaging of the cold interstellar medium (ISM) in both our Milky Way and nearby galaxies. Thanks to a cooled telescope, B-BOP will deliver wide-field 100–350 $\mu$m images of linearly polarised dust emission in Stokes Q and U with a resolution, signal-to-noise ratio, and both intensity and spatial dynamic ranges comparable to those achieved by Herschel images of the cold ISM in total intensity (Stokes I). The B-BOP 200 $\mu$m images will also have a factor $\sim $30 higher resolution than Planck polarisation data. This will make B-BOP a unique tool for characterising the statistical properties of the magnetised ISM and probing the role of magnetic fields in the formation and evolution of the interstellar web of dusty molecular filaments giving birth to most stars in our Galaxy. B-BOP will also be a powerful instrument for studying the magnetism of nearby galaxies and testing Galactic dynamo models, constraining the physics of dust grain alignment, informing the problem of the interaction of cosmic rays with molecular clouds, tracing magnetic fields in the inner layers of protoplanetary disks, and monitoring accretion bursts in embedded protostars.
To review the literature regarding screening for vestibular schwannoma in the context of demographic changes leading to increasing numbers of elderly patients presenting with asymmetric auditory symptoms.
Methods
A systematic review of the literature was performed, with narrative synthesis and statistical analysis of data where appropriate.
Results
Vestibular schwannomas diagnosed in patients aged over 70 years exhibit slower growth patterns and tend to be of smaller size compared to those tumours in younger age groups. This fact, combined with reduced life expectancy, renders the probability of these tumours in the elderly requiring active treatment with surgery or stereotactic radiotherapy to be extremely low. Vestibular schwannomas in the elderly are much more likely to be managed by serial monitoring with magnetic resonance imaging. The weighted yield of magnetic resonance imaging in the diagnosis of vestibular schwannoma in all age groups is 1.18 per cent, with almost 85 scans required to diagnose 1 tumour.
Conclusion
An evidence-based approach to the investigation of asymmetric hearing loss and tinnitus in the elderly patient can be used to formulate guidelines for the rational use of magnetic resonance imaging in this population.
To measure the outcomes of laser treatment of cholesteatoma covering cochlear and vestibular fistulas.
Methods
Cholesteatoma matrix over the fistula was denatured; the power density was sufficient only to gradually heat, but not vaporise, the keratin-forming matrix. The denaturing speed was controlled so that the integrity of the fistula cover was maintained. The change in bone conduction threshold and the residual rate of cholesteatoma at the fistula were measured.
Results
Thirty-six fistulas were assessed. There were seven cochlear fistulas. All were 5 mm or less in maximum length. For the entire group, the average change in bone conduction threshold was −0.3 dB. For cochlear fistulas, the average change in bone conduction was + 0.2 dB. The distribution of hearing results for the entire group was Gaussian; the apparent changes in hearing could be attributed to errors associated with testing. All patients underwent second-stage surgery. In all cases, the cholesteatoma was completely cleared from the fistula site. There were no facial palsies.
Conclusion
Laser denaturing of cholesteatoma matrix over fistulas measuring 5 mm or less of vestibular apparatus and the cochlea is effective at eliminating cholesteatoma, and is not associated with cochlear hearing loss or facial palsy.
Information regarding deformations in large and complex systems is necessary in the prediction of structural failures caused by un-natural flexural occurrences. Sensing systems which are used to predict shapes, in order to develop a global surface picture require high precision and lower time lag. In this work, a unique bio-inspired training mechanism for support vector regression is presented for shape sensing in structures mounted with Fiber Bragg Gratings. Experimental validation was carried out on a simply supported beam, loaded at different positions and an aircraft wing model for different types of bending. The resulting deflections at specified locations along the length of the beam and on both surfaces of the wing were interpreted from the wavelength shifts of the corresponding Fiber Bragg Gratings through the specially modified Support Vector Regression. The method has shown high accuracy, low computational requirements and enhanced prediction times. The proposed bio-inspired training method has also been compared with two conventional training methodologies.
An excellent laboratory for studying large scale magnetic fields is the grand design face-on spiral galaxy M51. Due to wavelength-dependent Faraday depolarization, linearly polarized synchrotron emission at different radio frequencies gives a picture of the galaxy at different depths: Observations at L-band (1 – 2 GHz) probe the halo region while at C- and X-band (4 – 8 GHz) the linearly polarized emission probe the disk region of M51. We present new observations of M51 using the Karl G. Jansky Very Large Array (VLA) at S-band (2 – 4 GHz), where previously no polarization observations existed, to shed new light on the transition region between the disk and the halo. We discuss a model of the depolarization of synchrotron radiation in a multilayer magneto-ionic medium and compare the model predictions to the multi-frequency polarization data of M51 between 1 – 8 GHz. The new S-band data are essential to distinguish between different models. Our study shows that the initial model parameters, i.e. the total regular and turbulent magnetic field strengths in the disk and halo of M51, need to be adjusted to successfully fit the models to the data.
To evaluate the survival outcomes and toxicities experienced by non-metastatic head and neck cancer (HNC) patients receiving modulated radiotherapy (RT).
Materials and methods
A total of 608 HNC patients treated consecutively from March 2010 to December 2014 with common subsites (oral cavity, oropharynx, hypopharynx, larynx and nasopharynx) of HNCs formed the study group. Eligible patients included those treated with radical or postoperative RT between March 2010 and December 2014. More than 90% patients received modulated RT [intensity-modulated radiotherapy (IMRT) or volumetric-modulated arc therapy (VMAT)] with concurrent chemotherapy as per stage guidelines. Demographic parameters and disease-related factors were analysed. Disease-free survival (DFS) was calculated from end date of RT till last follow-up or last date of disease control. Overall survival (OS) was calculated from date of registration to last follow-up date if alive. The primary endpoint was survival. The statistical analyses were performed using SPSS version 20.0 and Kaplan–Meier method was used for calculation survival.
Results
Among the evaluable patients, the median age was 60 years (range: 16–93) with male preponderance (male:female – 513:95). Majority were squamous cell carcinoma 93·4% (568/608). The subsites treated were oral cavity 36·8% (224). oropharynx 26·4% (161), larynx 19·7% (120), hypopharynx 10% (62) and nasopharynx 6·4% (41). RT intent was radical in 63·5% (386) and postoperative in 36·5% (222), with 59·5% (362) receiving concurrent chemotherapy. At last follow-up, 348 (57·2%) patients were alive, 169 (27·7%) patients had succumbed to disease and 120 (24·6%) patients had recurrent disease. Out of 120 recurrent cases loco-regional recurrence, nodal recurrence and distant metastases were seen in 62 (51·7%), 25 (20·8%), 33 (27·5%), respectively. In the entire study cohort at 2 year OS and DFS was 80 and 79% whereas 3 years OS and DFS was 70 and 75%, respectively.
Conclusions
In our study, 2 years and 3 years OS and DFS rates are found comparable to the international data with acceptable toxicity profile with the use of modulated RT. It seems to be possible because of stringent departmental protocols and good medical physics support. Our data re-validates need and benefit of advanced RT techniques like IG-IMRT and VMAT for both postoperative and radical HNC treatment at the cost of minimal long-term side effects. Future stringent follow-up and quality of life issues are being considered in a prospective manner.
Manganian andalusite occurs abundantly as porphyroblasts in manganiferous metasediments subjected to contact metamorphism under hornblende hornfels facies at the contact of a picrodolerite dyke near Manbazar, Purulia District, India. The Mn2O3 content of andalusite varies from 13.2% to 19.17%, corresponding to 14.8 and 21.14 mole per cent of ‘Mn2SiO5’ respectively. Based on the analysis showing maximum amount of Mn2O3 in andalusite, the mineral formula may be represented as follows:
Other minerals in the assemblage are muscovite, manganophyllite, spessartine, piemontite, quartz, braunite, hematite and rutile. The manganian andalusite is completely fresh and appears to have formed at the expense of spessartine, piemontite and braunite during contact metamorphism. The manganian andalusite probably formed at about 600°C at around 3 kbar pressure. This is another rare example of andalusite with very high Mn2O3 (and Fe2O3) as well as that of an occurrence of abundant manganian andalusite.
Possible relationships between groundwater arsenic concentration and alluvial sediment characteristics in a ∼19 km2 area in West Bengal have been investigated using a combination of hydrogeochemical, lithogeochemical and geophysical techniques. Arsenic hotspots, typically associated with elevated groundwater Fe and Mn, were found to be correlated to some extent with old river channels (abandoned meanders, oxbow lakes), where sandy aquifers included intercalated fine-grained overbank deposits, rich in As, Fe, Mn and Corg. Otherwise no demonstrably significant overall differences in any of lithology, grain-size distribution, mineral composition or Fe, Mn and organic C content of the sediments were found between two representative sites with contrastingly low (<50 μg 1—1) and high (>200 μg 1—1) As groundwater contents.
Our results are consistent with microbially mediated redox reactions controlled by the presence of natural organic matter within the aquifer and the occurrence of As-bearing redox traps, primarily formed by Fe and Mn oxides/hydroxides, being the most important factors which control the release of As into shallow groundwaters at the study site.
The evolution of vortex rings in isodensity and isoviscosity fluid has been studied analytically using a novel mathematical model. The model predicts the spatiotemporal variation in peak vorticity, circulation, vortex size and spacing based on instantaneous vortex parameters. This proposed model is quantitatively verified using experimental measurements. Experiments are conducted using high-speed particle image velocimetry (PIV) and laser induced fluorescence (LIF) techniques. Non-buoyant vortex rings are generated from a nozzle using a constant hydrostatic pressure tank. The vortex Reynolds number based on circulation $(\unicode[STIX]{x1D6E4}/\unicode[STIX]{x1D708})$ is varied in the range 100–1500 to account for a large range of operating conditions. Experimental results show good agreement with theoretical predictions. However, it is observed that neither Saffman’s thin-core model nor the thick-core equations could correctly explain vortex evolution for all initial conditions. Therefore, a transitional theory is framed using force balance equations which seamlessly integrate short- and long-time asymptotic theories. It is found that the parameter $A=(a/\unicode[STIX]{x1D70E})^{2}$, where $a$ is the vortex half-spacing and $\unicode[STIX]{x1D70E}$ denotes the standard deviation of the Gaussian vorticity profile, governs the regime of vortex evolution. For higher values of $A$, evolution follows short-time behaviour, while for $A=O(1)$, long-time behaviour is prominent. Using this theory, many reported anomalous observations have been explained.
Distinguishing temporal patterns of depressive symptoms during pregnancy and after childbirth has important clinical implications for diagnosis, treatment, and maternal and child outcomes. The primary aim of the present study was to distinguish patterns of chronically elevated levels of depressive symptoms v. trajectories that are either elevated during pregnancy but then remit after childbirth, v. patterns that increase after childbirth.
Methods
The report uses latent growth mixture modeling in a large, population-based cohort (N = 12 121) to investigate temporal patterns of depressive symptoms. We examined theoretically relevant sociodemographic factors, exposure to adversity, and offspring gender as predictors.
Results
Four distinct trajectories emerged, including resilient (74.3%), improving (9.2%), emergent (4.0%), and chronic (11.5%). Lower maternal and paternal education distinguished chronic from resilient depressive trajectories, whereas higher maternal and partner education, and female offspring gender, distinguished the emergent trajectory from the chronic trajectory. Younger maternal age distinguished the improving group from the resilient group. Exposure to medical, interpersonal, financial, and housing adversity predicted membership in the chronic, emergent, and improving trajectories compared with the resilient trajectory. Finally, exposure to medical, interpersonal, and financial adversity was associated with the chronic v. improving group, and inversely related to the emergent class relative to the improving group.
Conclusions
There are distinct temporal patterns of depressive symptoms during pregnancy, after childbirth, and beyond. Most women show stable low levels of depressive symptoms, while emergent and chronic depression patterns are separable with distinct correlates, most notably maternal age, education levels, adversity exposure, and child gender.
A method has been developed for calculating the load distribution, overall forces and moments on a thin wing of arbitrary shape undergoing small amplitude simple harmonic motion in inviscid, incompressible flow. The method is compared with experimental data and other theoretical methods for wings and control surfaces in pitching oscillation and wings going through a sinusoidal vertical gust.
An economic numerical method has been developed to calculate the incompressible potential flow about complete aircraft configurations by taking advantage of the computational efficiency of the internal distribution of singularities. For wing and wing-like components, source and vorticity singularities are distributed on the respective mean camber surfaces, while the fuselage carries a source distribution on its wetted surface. The singularity strengths are obtained by satisfying the flow tangency condition at selected points on all the wetted surfaces of the configuration. No attempt has been made to consider wing or body vortex shedding or separation. The results of the present method were compared with other theoretical and experimental data.