We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to evaluate the possibilities of artefact reduction using different anatomical implant positions with the Bonebridge bone-conduction hearing implant 602 for a patient with an acoustic neuroma requiring regular diagnostic magnetic resonance imaging of the tumour position.
Method
Three implant positions and magnetic resonance imaging examinations with and without customised sequences for metal artefact suppression were investigated. The diagnostic usefulness was rated by a radiologist (qualitative evaluation), and the relation between the area of artefact and the total head area was calculated (quantitative evaluation).
Results
Following the qualitative analysis, the radiologist rated the superior to middle fossa implant placement significantly better for diagnostic purposes, which is in agreement with the calculated artefact ratio (p < 0.0001). The customised slice-encoding metal artifact correction view-angle tilting metal artifact reduction technique sequences significantly decreased the relative artefact area between 5.13 per cent and 25.02 per cent. The smallest mean artefact diameter was found for the superior to middle fossa position with 6.80 ± 1.30 cm (range: 5.42–9.74 cm; reduction of 18.65 per cent).
Conclusion
The application of artefact reduction sequencing and special anatomical implant positioning allows regular magnetic resonance imaging in patients with the bone-conduction hearing implant 602 without sacrificing diagnostic imaging quality for tumour diagnosis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.