We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As the COVID-19 pandemic took hold in the USA in early 2020, it became clear that knowledge of the prevalence of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among asymptomatic individuals could inform public health policy decisions and provide insight into the impact of the infection on vulnerable populations. Two Clinical and Translational Science Award (CTSA) Hubs and the National Institutes of Health (NIH) set forth to conduct a national seroprevalence survey to assess the infection’s rate of spread. This partnership was able to quickly design and launch the project by leveraging established research capacities, prior experiences in large-scale, multisite studies and a highly skilled workforce of CTSA hubs and unique experimental capabilities at the NIH to conduct a diverse prospective, longitudinal observational cohort of 11,382 participants who provided biospecimens and participant-reported health and behavior data. The study was completed in 16 months and benefitted from transdisciplinary teamwork, information technology innovations, multimodal communication strategies, and scientific partnership for rigor in design and analytic methods. The lessons learned by the rapid implementation and dissemination of this national study is valuable in guiding future multisite projects as well as preparation for other public health emergencies and pandemics.
Antenatal multiple micronutrient supplements (MMS) are a cost-effective intervention to reduce adverse pregnancy and birth outcomes. However, the current WHO recommendation on the use of antenatal MMS is conditional, partly due to concerns about the effect on neonatal mortality in a subgroup of studies comparing MMS with iron and folic acid (IFA) supplements containing 60 mg of Fe. We aimed to assess the effect of MMS v. IFA on neonatal mortality stratified by Fe dose in each supplement.
Methods:
We updated the neonatal mortality analysis of the 2020 WHO guidelines using the generic inverse variance method and applied the random effects model to calculate the effect estimates of MMS v. IFA on neonatal mortality in subgroups of trials (n 13) providing the same or different amounts of Fe, that is, MMS with 60 mg of Fe v. IFA with 60 mg of Fe; MMS with 30 mg of Fe v. IFA with 30 mg of Fe; MMS with 30 mg of Fe v. IFA with 60 mg of Fe; and MMS with 20 mg of Fe v. IFA with 60 mg of Fe.
Results:
There were no statistically significant differences in neonatal mortality between MMS and IFA within any of the subgroups of trials. Analysis of MMS with 30 mg v. IFA with 60 mg of Fe (7 trials, 14 114 participants), yielded a non-significant risk ratio of 1·12 (95 % CI 0·83 to 1·50).
Conclusion:
Neonatal mortality did not differ between MMS and IFA regardless of Fe dose in either supplement.
Whiteite-(MnMnMn), Mn2+Mn2+Mn2+2Al2(PO4)4(OH)2⋅8H2O, is a new whiteite-subgroup member of the jahnsite group from the Foote Lithium Company mine, Kings Mountain district, Cleveland County, North Carolina, USA. It was found in small vugs of partially oxidised pegmatite minerals on the East dump of the mine, in association with eosphorite, hureaulite, fairfieldite, mangangordonite, whiteite-(CaMnMn) and jasonsmithite. It occurs as sugary aggregates of blade-like crystals up to 0.1 mm long and as epitaxial overgrowths on whiteite-(CaMnMn). The crystals are colourless to very pale brown, with a vitreous lustre and a white streak. The blades are flattened on {001} and elongated along [010], with poor cleavage on {001}. The calculated density is 2.82 g⋅cm–3. Optically it is biaxial (–) with α = 1.599(2), β = 1.605(2), γ = 1.609(2) (white light); 2V (calc.) = 78.2°, having no observable dispersion or pleochroism, and with orientation X = b. Electron microprobe analyses and structure refinement gave the empirical formula (Mn2+0.59Ca0.38Na0.03)Σ1.00Mn1.00(Mn2+1.04Fe3+0.58Fe2+0.23Zn0.16Mg0.08)Σ2.09Al2.04(PO4)3.89(OH)3.18(H2O)7.26. Whiteite-(MnMnMn) is monoclinic, P2/a, a = 15.024(3) Å, b = 6.9470(14) Å, c = 9.999(2) Å, β = 110.71(3)°, V = 976.2(4) Å3 and Z = 2. The crystal structure was refined using synchrotron single-crystal data to wRobs = 0.057 for 2014 reflections with I > 3σ(I). Site occupancy refinements confirm the ordering of dominant Mn in the X, M1 and M2 sites of the general jahnsite-group formula XM1(M2)2(M3)2(H2O)8(OH)2(PO4)4. A review of published crystallochemical data for jahnsite-group minerals shows a consistent chemical pressure effect in these minerals, manifested as a contraction of the unit-cell parameter, a, as the mean size of the X and M1 site cations increases. This is analogous to negative thermal expansion, but with increasing cation size, rather than heating, inducing octahedral rotations that result in an anisotropic contraction of the unit cell.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
The present study reports the validity of multiple assessment methods for tracking changes in body composition over time and quantifies the influence of unstandardised pre-assessment procedures. Resistance-trained males underwent 6 weeks of structured resistance training alongside a hyperenergetic diet, with four total body composition evaluations. Pre-intervention, body composition was estimated in standardised (i.e. overnight fasted and rested) and unstandardised (i.e. no control over pre-assessment activities) conditions within a single day. The same assessments were repeated post-intervention, and body composition changes were estimated from all possible combinations of pre-intervention and post-intervention data. Assessment methods included dual-energy X-ray absorptiometry (DXA), air displacement plethysmography, three-dimensional optical imaging, single- and multi-frequency bioelectrical impedance analysis, bioimpedance spectroscopy and multi-component models. Data were analysed using equivalence testing, Bland–Altman analysis, Friedman tests and validity metrics. Most methods demonstrated meaningful errors when unstandardised conditions were present pre- and/or post-intervention, resulting in blunted or exaggerated changes relative to true body composition changes. However, some methods – particularly DXA and select digital anthropometry techniques – were more robust to a lack of standardisation. In standardised conditions, methods exhibiting the highest overall agreement with the four-component model were other multi-component models, select bioimpedance technologies, DXA and select digital anthropometry techniques. Although specific methods varied, the present study broadly demonstrates the importance of controlling and documenting standardisation procedures prior to body composition assessments across distinct assessment technologies, particularly for longitudinal investigations. Additionally, there are meaningful differences in the ability of common methods to track longitudinal body composition changes.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
In recent years, a variety of efforts have been made in political science to enable, encourage, or require scholars to be more open and explicit about the bases of their empirical claims and, in turn, make those claims more readily evaluable by others. While qualitative scholars have long taken an interest in making their research open, reflexive, and systematic, the recent push for overarching transparency norms and requirements has provoked serious concern within qualitative research communities and raised fundamental questions about the meaning, value, costs, and intellectual relevance of transparency for qualitative inquiry. In this Perspectives Reflection, we crystallize the central findings of a three-year deliberative process—the Qualitative Transparency Deliberations (QTD)—involving hundreds of political scientists in a broad discussion of these issues. Following an overview of the process and the key insights that emerged, we present summaries of the QTD Working Groups’ final reports. Drawing on a series of public, online conversations that unfolded at www.qualtd.net, the reports unpack transparency’s promise, practicalities, risks, and limitations in relation to different qualitative methodologies, forms of evidence, and research contexts. Taken as a whole, these reports—the full versions of which can be found in the Supplementary Materials—offer practical guidance to scholars designing and implementing qualitative research, and to editors, reviewers, and funders seeking to develop criteria of evaluation that are appropriate—as understood by relevant research communities—to the forms of inquiry being assessed. We dedicate this Reflection to the memory of our coauthor and QTD working group leader Kendra Koivu.1
The taxonomy of the genus Sticta in Hawaii is reassessed, based on a separately published molecular phylogeny using the fungal barcoding marker ITS. Based on Magnusson and Zahlbruckner's treatment from 1943 and Magnusson's catalogue from 1955, seven species of Sticta and three infraspecific taxa had been reported from the archipelago, all widespread except the putative endemic S. plumbicolor. Here we provide a taxonomic treatment of 13 taxa, 12 species and one subspecies, distinguished in a previous phylogenetic analysis: S. acyphellata, S. andina, S. antoniana, S. emmanueliana, S. flynnii, S. fuliginosa, S. hawaiiensis, S. limbata, S. plumbicolor, S. scabrosa subsp. hawaiiensis, S. smithii, S. tomentosa and S. waikamoi. All taxa are described, discussed and illustrated and a dichotomous key is presented. The implications of revised species taxonomies for studies in other fields such as ecology, ecophysiology, biogeography, biochemistry, and applications such as environmental monitoring are discussed. We also propose a protocol to use Sticta lichens to monitor the environmental health of Hawaiian ecosystems.
To identify factors that increase the microbial load in the operating room (OR) and recommend solutions to minimize the effect of these factors.
Design:
Observation and sampling study.
Setting:
Academic health center, public hospitals.
Methods:
We analyzed 4 videotaped orthopedic surgeries (15 hours in total) for door openings and staff movement. The data were translated into a script denoting a representative frequency and location of movements for each OR team member. These activities were then simulated for 30 minutes per trial in a functional operating room by the researchers re-enacting OR staff-member roles, while collecting bacteria and fungi using settle plates. To test the hypotheses on the influence of activity on microbial load, an experimental design was created in which each factor was tested at higher (and lower) than normal activity settings for a 30-minute period. These trials were conducted in 2 phases.
Results:
The frequency of door opening did not independently affect the microbial load in the OR. However, a longer duration and greater width of door opening led to increased microbial load in the OR. Increased staff movement also increased the microbial load. There was a significantly higher microbial load on the floor than at waist level.
Conclusions:
Movement of staff and the duration and width of door opening definitely affects the OR microbial load. However, further investigation is needed to determine how the number of staff affects the microbial load and how to reduce the microbial load at the surgical table.
Optical tracking systems typically trade off between astrometric precision and field of view. In this work, we showcase a networked approach to optical tracking using very wide field-of-view imagers that have relatively low astrometric precision on the scheduled OSIRIS-REx slingshot manoeuvre around Earth on 22 Sep 2017. As part of a trajectory designed to get OSIRIS-REx to NEO 101955 Bennu, this flyby event was viewed from 13 remote sensors spread across Australia and New Zealand to promote triangulatable observations. Each observatory in this portable network was constructed to be as lightweight and portable as possible, with hardware based off the successful design of the Desert Fireball Network. Over a 4-h collection window, we gathered 15 439 images of the night sky in the predicted direction of the OSIRIS-REx spacecraft. Using a specially developed streak detection and orbit determination data pipeline, we detected 2 090 line-of-sight observations. Our fitted orbit was determined to be within about 10 km of orbital telemetry along the observed 109 262 km length of OSIRIS-REx trajectory, and thus demonstrating the impressive capability of a networked approach to Space Surveillance and Tracking.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
We describe an ultra-wide-bandwidth, low-frequency receiver recently installed on the Parkes radio telescope. The receiver system provides continuous frequency coverage from 704 to 4032 MHz. For much of the band (
${\sim}60\%$
), the system temperature is approximately 22 K and the receiver system remains in a linear regime even in the presence of strong mobile phone transmissions. We discuss the scientific and technical aspects of the new receiver, including its astronomical objectives, as well as the feed, receiver, digitiser, and signal processor design. We describe the pipeline routines that form the archive-ready data products and how those data files can be accessed from the archives. The system performance is quantified, including the system noise and linearity, beam shape, antenna efficiency, polarisation calibration, and timing stability.
Propagating inhomogeneous electromagnetic waves called surface plasmon polaritons (SPPs) can be excited by free-space beams on corrugated conducting surfaces at resonance angles determined by corrugation period, permittivity, and optical frequency. SPPs are coupled to and co-propagate with surface charge displacements. Complete electrical isolation of individual conducting corrugations prevents the charge displacement necessary to sustain an SPP, such that excitation resonances of traveling SPPs are absent. However, SPPs can be excited via electric induction if a smooth conducting surface exists below and nearby the isolated conducting corrugations. The dependence of SPP excitation resonances on that separation is experimentally investigated here at long-wave infrared wavelengths. We find that excitation resonances for traveling SPPs broaden and disappear as the dielectric’s physical thickness is increased beyond ~1% of the free-space wavelength. The resonance line width increases with refractive index and optical thickness of the dielectric.
The science of studying diamond inclusions for understanding Earth history has developed significantly over the past decades, with new instrumentation and techniques applied to diamond sample archives revealing the stories contained within diamond inclusions. This chapter reviews what diamonds can tell us about the deep carbon cycle over the course of Earth’s history. It reviews how the geochemistry of diamonds and their inclusions inform us about the deep carbon cycle, the origin of the diamonds in Earth’s mantle, and the evolution of diamonds through time.
Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a dielectric of thickness t, and thin separated metal top-surface structures of dimension l. The fundamental resonance wavelength is predicted by an analytic standing-wave model based on t, l, and the dielectric refractive index spectrum. For the dielectrics SiO2, AlN, and TiO2, values for l of a few microns give fundamental resonances in the 8-12 μm long-wave infrared (LWIR) wavelength region. Agreement with theory is better for t/l exceeding 0.1. Harmonics at shorter wavelengths were already known, but we show that there are additional resonances in the far-infrared 20 - 50 μm wavelength range in MIM structures designed to have LWIR fundamental resonances. These new resonances are consistent with the model if far-IR dispersion features in the index spectrum are considered. LWIR fundamental absorptions are experimentally shown to be optimized for a ratio t/l of 0.1 to 0.3 for SiO2- and AlN-based MIM absorbers, respectively, with TiO2-based MIM optimized at an intermediate ratio.
Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a thin dielectric, and thin separated metal top-surface structures. The dielectric SiO2 strongly absorbs near 9 µm wavelength and has correspondingly strong long-wave-infrared (LWIR) dispersion for the refractive index. This dispersion results in multiple absorption resonances spanning the LWIR, which can enhance broad-band sensitivity for LWIR bolometers. Similar considerations apply to silicon nitride Si3N4. TiO2 and AlN have comparatively low dispersion and give simple single LWIR resonances. These dispersion-dependent features for infrared MIM devices are demonstrated by experiment, electrodynamic simulation, and an analytic model based on standing waves.