We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with hematological malignancies are at high risk of infections due to both the disease and the associated treatments. The use of immunoglobulin (Ig) to prevent infections is increasing in this population, but its cost effectiveness is unknown. This trial-based economic evaluation aimed to compare the cost effectiveness of prophylactic Ig with prophylactic antibiotics in patients with hematological malignancies.
Methods
The economic evaluation used individual patient data from the RATIONAL feasibility trial, which randomly assigned 63 adults with chronic lymphocytic leukemia, multiple myeloma, or lymphoma to prophylactic Ig or prophylactic antibiotics. The following two analyses were conducted to estimate the cost effectiveness of the two treatments over the 12-month trial period from the perspective of the Australian health system:
(i) a cost-utility analysis (CUA) to assess the incremental cost per quality-adjusted life-year (QALY) gained using data collected with the EuroQol 5D-5L questionnaire; and
(ii) a cost-effectiveness analysis (CEA) to assess the incremental cost per serious infection prevented (grade ≥3) and per infection prevented (any grade).
Results
The total cost per patient was significantly higher in the Ig arm than in the antibiotic arm (difference AUD29,140 [USD19,000]). There were non-significant differences in health outcomes between the treatment arms: patients treated with Ig had fewer QALYs (difference −0.072) and serious infections (difference −0.26) than those given antibiotics, but more overall infections (difference 0.76). The incremental cost-effectiveness from the CUA indicated that Ig was more costly than antibiotics and associated with fewer QALYs. In the CEA, Ig costed an additional AUD111,262 (USD73,000) per serious infection prevented, but it was more costly than antibiotics and associated with more infections when all infections were included.
Conclusions
These results indicate that, on average, Ig prophylactic treatment may not be cost effective compared with prophylactic antibiotics for the group of patients with hematological malignancies recruited to the RATIONAL feasibility trial. Further research is needed to confirm these findings in a larger population and over the longer term.
The New Jersey Kids Study (NJKS) is a transdisciplinary statewide initiative to understand influences on child health, development, and disease. We conducted a mixed-methods study of project planning teams to investigate team effectiveness and relationships between team dynamics and quality of deliverables.
Methods:
Ten theme-based working groups (WGs) (e.g., Neurodevelopment, Nutrition) informed protocol development and submitted final reports. WG members (n = 79, 75%) completed questionnaires including de-identified demographic and professional information and a modified TeamSTEPPS Team Assessment Questionnaire (TAQ). Reviewers independently evaluated final reports using a standardized tool. We analyzed questionnaire results and final report assessments using linear regression and performed constant comparative qualitative analysis to identify central themes.
Results:
WG-level factors associated with greater team effectiveness included proportion of full professors (β = 31.24, 95% CI 27.65–34.82), team size (β = 0.81, 95% CI 0.70–0.92), and percent dedicated research effort (β = 0.11, 95% CI 0.09–0.13); age distribution (β = −2.67, 95% CI –3.00 to –2.38) and diversity of school affiliations (β = –33.32, 95% CI –36.84 to –29.80) were inversely associated with team effectiveness. No factors were associated with final report assessments. Perceptions of overall initiative leadership were associated with expressed enthusiasm for future NJKS participation. Qualitative analyses of final reports yielded four themes related to team science practices: organization and process, collaboration, task delegation, and decision-making patterns.
Conclusions:
We identified several correlates of team effectiveness in a team science initiative's early planning phase. Extra effort may be needed to bridge differences in team members' backgrounds to enhance the effectiveness of diverse teams. This work also highlights leadership as an important component in future investigator engagement.
The nature of interstratification in mixed-layer illite-montmorillonites has been investigated by comparison of diffraction patterns of ethylene glycol and ethylene glycol monoethyl ether treated samples with calculated one-dimensional diffraction profiles. The calculated profiles take into account the effects of particle size distribution, chemical composition, and convolution factors as well as proportions of layers and interstratification type. On the basis of detailed matching of diffraction patterns of monomineralic illite-montmorillonites of known chemical composition it is concluded that there are three types of interstratification: (1) random, (2) allevardite-like ordering, and (3) superlattice units consisting of three illite and one montmorillonite layers (IMII). By comparison of suites of calculated profiles with the diffraction patterns of many samples of illite-montmorillonites it is concluded that virtually all illite-montmorillonites with expandabilities from about 40 to 100 per cent are randomly interstratified (allevardite being exceptional); at >40 per cent montmorillonite layers they almost always have ordered interstratification. Allevardite-like ordering predominates in illitemontmorillonites which have ordered interstratification, with the IMII superlattice varieties confined to samples with about 10 per cent montmorillonite layers.
Vermiculite, mixed-layer vermiculite-phlogopite, and smectite are presently forming from igneous and metamorphic bedrock in the alpine zone of the northern Cascades, Washington. In addition, south-facing exposures of quartz-diorites and metadiorites above snow line are weathering to ferruginous bauxite. Calculations indicate that vermiculite is presently forming from phlogopite schists in this environment at a unit area rate that is approximately six times the average estimated rate of clay erosion for North America. The mineralogical data indicate that chemical weathering in this region is a quantitatively significant process, and suggest that in the development of current geomorphic concepts researchers may have generally underestimated the importance of chemical weathering in alpine environments.
Clay samples from shales and bentonites in the Mancos Shale (Cretaceous) and its stratigraphic equivalents in the southern Rocky Mountain and Colorado Plateau have been analyzed by X-ray powder diffraction methods. The major clay in the shales is mixed layered illite/smectite, with 20–60% illite layers. The regional distribution of ordered vs. random interstratification in the illite/smectite is consistent with the concept of burial metamorphism in which smectite interlayers are converted to illite, resulting finally in ordered interstratification. The interstratification data correlate with other geologic information, including rank of coal and Laramide tectonic activity. In addition, contact metamorphism of the shale by Tertiary igneous intrusions produced a similar clay suite. Chemical variation within these shales (particularly the presence or absence of carbonate) affected the clay conversion reactions in the interbedded bentonites and the shale itself during the early stages of transformation. In extreme cases, shales and bentonites from a single outcrop may contain clays that range from pure smectite (calcareous shales) to ordered illite/smectite containing ⩾50% illite layers (noncalcareous shales). The use of mixed-layered illite/smectite compositions to infer thermal regimes, therefore, may be misleading unless allowance is made for local chemical controls.
High-resolution transmission electron microscopy (HRTEM) and electron diffraction experiments have been performed on R1 and R> 1 illite/smectite (I/S) samples that from X-ray powder diffraction (XRD) experiments appear to contain well-ordered layer sequences. The HRTEM images confirmed earlier computer image simulations, which suggested that periodicities due to I/S ordering can be imaged in TEM instruments of moderate resolution. The experiments also confirmed that in instruments of this sort, the strongest contrast arising from the compositional difference between I and S layers occurs under rather unusual imaging conditions of strong overfocus. Some selected-area electron diffraction (SAD) patterns showed additional diffraction spots consistent with R1 and R3 ordering. SAD patterns and cross-fringes arising in HRTEM images from non-00l reciprocal lattice rows indicated that the stacking vectors of most adjacent 2:1 layers were not randomly oriented with respect to each other. Thus, the I/S was not fully turbostratic, but instead consisted of very thin, coherently stacked crystallites that extended across the fundamental particles postulated by Nadeau and coworkers.
S/(I + S) ratios were determined for about seventy HRTEM images obtained and interpreted by three different TEM operators. These ratios were consistent with those obtained from standard XRD procedures, suggesting that results obtained by XRD can be used to infer the initial structural state of mixed-layer I/S prior to treatment of samples for XRD experiments. The HRTEM experiments thus demonstrated that the two specimens examined consisted of ordered I/S existing as small crystals, most of which contained more layers than the fundamental particles of Nadeau and coworkers. The non-turbostratic stacking suggests an energetic interaction between the individual fundamental particles, leading to at least two alternative thermodynamic descriptions of these materials. Although the I/S crystals in the present experiments probably were disaggregated into fundamental particles during sample preparation for XRD, the I/S crystals appear to have separated only along the smectite interlayers. If the term “fundamental particle” is to be used for primary, untreated I/S, its original definition should be modified to include not only free particles, but also those that occur as layers within small crystals. It further should be recognized that these particles can interact thermodynamically and crystallographically with their neighbors.
Naturally occurring ammonium illites have been discovered in black shales surrounding a stratiform base metal deposit in the DeLong Mountains, northern Alaska. Infrared spectra of the samples exhibit pronounced absorption at 1430 cm−1, the resonant-banding frequency for NH4+ coordinated in the illite interlayer. X-ray powder diffraction characteristics of the ammonium illites include an expanded d(001) spacing, with values as large as 10.16 Å, and ratios for I001/I003 and I002/I005 of about 2. Infrared analyses of physical mixtures of NH4Cl with a standard illite, and comparisons with synthetic ammonium micas indicate significant substitution (>50%) of NH4+ for K+ in the illite interlayer position. Nitrogen determinations on two ammonium illites after removal of carbonaceous matter gave values of 1.48 wt. % NH4+ and 1.44 wt. % NH4+. A survey of more than 150 different shale horizons indicates that the NH4+ content of the illites increases in proximity to the stratiform base metal mineralization.
The heavy atom content and distribution in chlorite were estimated using the relative intensities of basal X-ray powder diffraction (XRD) peaks. For these peaks to be meaningful, however, corrections had to be made for the effects of sample thickness, sample length, and preferred orientation of the mineral grains, all of which are 2θ dependent. The effects of sample thickness were corrected for by a simple formula. The effects of sample length were accounted for by using rectangular samples and by ensuring that the sample intersected the X-ray beam through the range of diffraction angles of interest. Preferred orientation of mineral grains were either measured directly or estimated. Estimated values were quicker and easier to obtain and were within 5% of measured values. A comparison of the compositional parameters of chlorite estimated before correcting for these sample effects with those estimated after the corrections had been applied indicate that the uncorrected values differed from the corrected values by as much as 55% of the latter values. Mounts of a single sample prepared by different filter-membrane peel and porous-plate techniques yielded widely different compositions until the measurements were corrected for sample effects. Analyses in triplicate indicated that the XRD intensity ratio 003/001 is preferred for calculating heavy atom distributions and abundances in chlorite because of the relative strength of the 001 peak.
The three-dimensional crystal structures of illite-smectite (I-S) in K-bentonite samples from the Appalachian Basin are characterized by rotational disorder in the stacking sequence of 2:1 illite layers, different proportions of n60° rotations (as opposed to n120°) in the rotated layers, and layers with centrosymmetric trans-vacant (tv) octahedral sites that are randomly interstratified with noncentric cis-vacant (cv) layers. The proportion of cv interstratification in the I-S increases with tetrahedral A1 and decreases with octahedral Mg and Fe content. The I-S minerals in the northern Appalachian basin K-bentonites are characterized by high (79% average) proportions of cv (Pcv) layers. In contrast, I-S from equivalent K- bentonites from the southern Appalachian basin has low Pcv values (38% average). These values do not correlate with expandability or rotational disorder. The geographic distribution of these I-S structural parameters may have resulted from possibly short-term, hot, and advective fluid migrations that differed in Mg concentrations and/or other physical and chemical parameters.
Prior to the COVID-19 pandemic, our research group initiated a pediatric practice-based randomized trial for the treatment of childhood obesity in rural communities. Approximately 6 weeks into the originally planned 10-week enrollment period, the trial was forced to pause all study activity due to the COVID-19 pandemic. This pause necessitated a substantial revision in recruitment, enrollment, and other study methods in order to complete the trial using virtual procedures. This descriptive paper outlines methods used to recruit, enroll, and manage clinical trial participants with technology to obtain informed consent, obtain height and weight measurements by video, and maintain participant engagement throughout the duration of the trial.
Methods:
The study team reviewed the IRB records, protocol team meeting minutes and records, and surveyed the site teams to document the impact of the COVID-19 shift to virtual procedures on the study. The IRB approved study changes allowed for flexibility between clinical sites given variations in site resources, which was key to success of the implementation.
Results:
All study sites faced a variety of logistical challenges unique to their location yet successfully recruited the required number of patients for the trial. Ultimately, virtual procedures enhanced our ability to establish relationships with participants who were previously beyond our reach, but presented several challenges and required additional resources.
Conclusion:
Lessons learned from this study can assist other study groups in navigating challenges, especially when recruiting and implementing studies with rural and underserved populations or during challenging events like the pandemic.
This paper examines the emergence of a pattern that Stump and Finkel () dub Marginal Detraction: a tendency in inflection class systems for low type frequency (i.e., irregular) classes to disproportionately detract from the predictability of regular classes. We ask: What factors lead to the emergence (and sometimes non-emergence) of Marginal Detraction? We use an iterated agent-based Bayesian learning model to simulate the conditions for analogical restructuring of inflection classes over time. Input to the model consists of artificial inflection class systems that vary in how the classes overlap — their network structure. We find that network properties predict whether the Marginal Detraction distribution emerges within the model. We conclude that languagespecific network properties shape local interactions among words and thereby likely play a significant role in analogical inflection class restructuring and the emergence (or non-emergence) of global properties of inflectional systems.
The late Holocene Bonneville landslide, a 15.5 km2 rockslide-debris avalanche, descended 1000 m from the north side of the Columbia River Gorge and dammed the Columbia River where it bisects the Cascade Range of Oregon and Washington, USA. The landslide, inundation, and overtopping created persistent geomorphic, ecologic, and cultural consequences to the river corridor, reported by Indigenous narratives and explorer accounts, as well as scientists and engineers. From new dendrochronology and radiocarbon dating of three trees killed by the landslide, one entrained and buried by the landslide and two killed by rising water in the impounded Columbia River upstream of the blockage, we find (1) the two drowned trees and the buried tree died the same year, and (2) the age of tree death, and hence the landslide (determined by combined results of nine radiocarbon analyses of samples from the three trees), falls within AD 1421–1455 (3σ confidence interval). This result provides temporal context for the tremendous physical, ecological, and cultural effects of the landslide, as well as possible triggering mechanisms. The age precludes the last Cascadia Subduction Zone earthquake of AD 1700 as a landslide trigger, but not earlier subduction zone or local crustal earthquakes.
What is classical music? This book answers the question in a manner never before attempted, by presenting the history of fifteen parallel traditions, of which Western classical music is just one. Eachmusic is analysed in terms of its modes, scales, and theory; its instruments, forms, and aesthetic goals; its historical development, golden age, and condition today; and the conventions governing its performance. The writers are leading ethnomusicologists, and their approach is based on the belief that music is best understood in the context of the culture which gave rise to it . By including Mande and Uzbek-Tajik music - plus North American jazz - in addition to the better-known styles of the Middle East, the Indian sub-continent, the Far East, and South-East Asia, this book offers challenging new perspectives on the word 'classical'. It shows the extent to which most classical traditions are underpinned by improvisation, and reveals the cognate origins of seemingly unrelated musics; it reflects the multifarious ways in which colonialism, migration, and new technology have affected musical development, and continue to do today. With specialist language kept to a minimum, it's designed to help both students and general readers to appreciate musical traditions which may be unfamiliar to them, and to encounter the reality which lies behind that lazy adjective 'exotic'.
MICHAEL CHURCH has spent much of his career in newspapers as a literary and arts editor; since 2010 he has been the music and opera critic of The Independent. From 1992 to 2005 he reported on traditional musics all over the world for the BBC World Service; in 2004, Topic Records released a CD of his Kazakh field recordings and, in 2007, two further CDs of his recordings in Georgia and Chechnya.
Contributors: Michael Church, Scott DeVeaux, Ivan Hewett, David W. Hughes, Jonathan Katz, Roderic Knight, Frank Kouwenhoven, Robert Labaree, Scott Marcus, Terry E. Miller, Dwight F.Reynolds, Neil Sorrell, Will Sumits, Richard Widdess, Ameneh Youssefzadeh
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
We describe an ultra-wide-bandwidth, low-frequency receiver recently installed on the Parkes radio telescope. The receiver system provides continuous frequency coverage from 704 to 4032 MHz. For much of the band (
${\sim}60\%$
), the system temperature is approximately 22 K and the receiver system remains in a linear regime even in the presence of strong mobile phone transmissions. We discuss the scientific and technical aspects of the new receiver, including its astronomical objectives, as well as the feed, receiver, digitiser, and signal processor design. We describe the pipeline routines that form the archive-ready data products and how those data files can be accessed from the archives. The system performance is quantified, including the system noise and linearity, beam shape, antenna efficiency, polarisation calibration, and timing stability.
Self-reported activity restriction is an established correlate of depression in dementia caregivers (dCGs). It is plausible that the daily distribution of objectively measured activity is also altered in dCGs with depression symptoms; if so, such activity characteristics could provide a passively measurable marker of depression or specific times to target preventive interventions. We therefore investigated how levels of activity throughout the day differed in dCGs with and without depression symptoms, then tested whether any such differences predicted changes in symptoms 6 months later.
Design, setting, participants, and measurements:
We examined 56 dCGs (mean age = 71, standard deviation (SD) = 6.7; 68% female) and used clustering to identify subgroups which had distinct depression symptom levels, leveraging baseline Center for Epidemiologic Studies of Depression Scale–Revised Edition and Patient Health Questionnaire-9 (PHQ-9) measures, as well as a PHQ-9 score from 6 months later. Using wrist activity (mean recording length = 12.9 days, minimum = 6 days), we calculated average hourly activity levels and then assessed when activity levels relate to depression symptoms and changes in symptoms 6 months later.
Results:
Clustering identified subgroups characterized by: (1) no/minimal symptoms (36%) and (2) depression symptoms (64%). After multiple comparison correction, the group of dCGs with depression symptoms was less active from 8 to 10 AM (Cohen’s d ≤ −0.9). These morning activity levels predicted the degree of symptom change on the PHQ-9 6 months later (per SD unit β = −0.8, 95% confidence interval: −1.6, −0.1, p = 0.03) independent of self-reported activity restriction and other key factors.
Conclusions:
These novel findings suggest that morning activity may protect dCGs from depression symptoms. Future studies should test whether helping dCGs get active in the morning influences the other features of depression in this population (i.e. insomnia, intrusive thoughts, and perceived activity restriction).
The purpose of this update is to provide the most current information about both the Colorado Adoption Project (CAP) and the Longitudinal Twin Study (LTS) and to introduce the Colorado Adoption/Twin Study of Lifespan behavioral development and cognitive aging (CATSLife), a product of their merger and a unique study of lifespan behavioral development and cognitive aging. The primary objective of CATSLife is to assess the unique saliency of early childhood genetic and environmental factors to adult cognitive maintenance and change, as well as proximal influences and innovations that emerge across development. CATSLife is currently assessing up to 1600 individuals on the cusp of middle age, targeting those between 30 and 40 years of age. The ongoing CATSLife data collection is described as well as the longitudinal data available from the earlier CAP and LTS assessments. We illustrate CATSLife via current projects and publications, highlighting the measurement of genetic, biochemical, social, sociodemographic and environmental indices, including geospatial features, and their impact on cognitive maintenance in middle adulthood. CATSLife provides an unparalleled opportunity to assess prospectively the etiologies of cognitive change and test the saliency of early childhood versus proximal influences on the genesis of cognitive decline.
Recent commercialization of auxin herbicide–based weed control systems has led to increased off-target exposure of susceptible cotton cultivars to auxin herbicides. Off-target deposition of dilute concentrations of auxin herbicides can occur on cotton at any stage of growth. Field experiments were conducted at two locations in Mississippi from 2014 to 2016 to assess the response of cotton at various growth stages after exposure to a sublethal 2,4-D concentration of 8.3 g ae ha−1. Herbicide applications occurred weekly from 0 to 14 weeks after emergence (WAE). Cotton exposure to 2,4-D at 2 to 9 WAE resulted in up to 64% visible injury, whereas 2,4-D exposure 5 to 6 WAE resulted in machine-harvested yield reductions of 18% to 21%. Cotton maturity was delayed after exposure 2 to 10 WAE, and height was increased from exposure 6 to 9 WAE due to decreased fruit set after exposure. Total hand-harvested yield was reduced from 2,4-D exposure 3, 5 to 8, and 13 WAE. Growth stage at time of exposure influenced the distribution of yield by node and position. Yield on lower and inner fruiting sites generally decreased from exposure, and yield partitioned to vegetative or aborted positions and upper fruiting sites increased. Reductions in gin turnout, micronaire, fiber length, fiber-length uniformity, and fiber elongation were observed after exposure at certain growth stages, but the overall effects on fiber properties were small. These results indicate that cotton is most sensitive to low concentrations of 2,4-D during late vegetative and squaring growth stages.