We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A two-step framework to analyze local microstructure variations of paper sheets based on 3D image data is presented. First, a multi-stage workflow efficiently acquires a large set of highly resolved tomographic image data, which enables—in combination with statistical image analysis—the quantification of local variations and pairwise correlations of morphological microstructure characteristics on length scales ranging from micrometers to centimeters. Secondly, the microstructure is analyzed in terms of the local behavior of porosity, thickness, and further descriptors related to transportation paths. The power of the presented framework is demonstrated, showing that it allows one (i) to quantitatively reveal the difference in terms of local structural variations between a model paper before and after unidirectional compression via hard-nip calendering and that (ii) the field of view which is required to reliably compute the probability distributions of the considered local microstructure characteristics is at least 20 mm$^{2}$. The results elucidate structural differences related to local densification. In particular, it is shown how calendering transforms local variations in sheet thickness into marked local mass density variations. The obtained results are in line with experimental measurements of macroscopic properties (basis weight, Bekk smoothness parameters, thickness, and Gurley retention times).
The launch and subsequent motion of a projectile provide a context for several quantities that yearn to be optimised. Most notable is the horizontal range of the projectile, a problem dating back to Galileo and still studied in modern times; see, for example [1], [2], [3], [4]. In a different direction, the articles [5] and [6] provide a solution to the problem of finding the angle of launch that results in the trajectory of longest arc length.
To explore multiple methods of calculating diet diversity scores (DDS) to maximize associations with predicted dietary micronutrient adequacy among schoolchildren in rural Kenya.
Design
Up to three 24 h recall interviews were administered for each child for a total of 1544 d of intake from all schoolchildren. Daily amounts of food consumed were assigned to one of eight food groups. Five DDS were developed based on various minimum intake amounts from each food group: (i) 1 g; (ii) 15 g; (iii) a variable minimum based on the content of a target nutrient for each group; (iv) the median intake level for each group; and (v) the 90th percentile intake level for each group. A diet was assigned 1 point towards the daily DDS if the food group intake was above the defined minimum level. Five scores were calculated for each child, and bivariate longitudinal random-effects models were used to assess the correlation between each DDS and the mean probability of adequacy for fourteen nutrients.
Setting
Embu District, Kenya.
Subjects
Schoolchildren (n 529), mean age 7·00 (sd 1·41) years.
Results
Only DDS based on a 15 g minimum and DDS based on nutrient content were significantly associated with mean probability of adequacy after adjusting for energy intake (0·21 and 0·41, respectively).
Conclusions
A DDS using minimum intakes based on nutrients contributed by a food group best predicted nutrient adequacy in this population. These analyses contribute to the continued search for simpler and more valid dietary quality indicators among low-income nations.
Ice deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high amount of basal motion contribution to surface velocity of 44–73% in winter, and up to 90% in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas. This effect necessitates the use of high-order ice-flow models, not only in regions of fast-flowing ice streams but in all temperate-based areas of the GrIS. The agreement between modeled and measured deformation rates confirms that the recommended values of the temperature-dependent flow rate factor A are a good choice for ice-sheet models.
Micronutrient deficiencies and suboptimal energy intake are widespread in rural Kenya, with detrimental effects on child growth and development. Sporadic school feeding programmes rarely include animal source foods (ASF). In the present study, a cluster-randomised feeding trial was undertaken to determine the impact of snacks containing ASF on district-wide, end-term standardised school test scores and nutrient intake. A total of twelve primary schools were randomly assigned to one of three isoenergetic feeding groups (a local plant-based stew (githeri) with meat, githeri plus whole milk or githeri with added oil) or a control group receiving no intervention feeding. After the initial term that served as baseline, children were fed at school for five consecutive terms over two school years from 1999 to 2001. Longitudinal analysis was used controlling for average energy intake, school attendance, and baseline socio-economic status, age, sex and maternal literacy. Children in the Meat group showed significantly greater improvements in test scores than those in all the other groups, and the Milk group showed significantly greater improvements in test scores than the Plain Githeri (githeri+oil) and Control groups. Compared with the Control group, the Meat group showed significant improvements in test scores in Arithmetic, English, Kiembu, Kiswahili and Geography. The Milk group showed significant improvements compared with the Control group in test scores in English, Kiswahili, Geography and Science. Folate, Fe, available Fe, energy per body weight, vitamin B12, Zn and riboflavin intake were significant contributors to the change in test scores. The greater improvements in test scores of children receiving ASF indicate improved academic performance, which can result in greater academic achievement.
To examine the effects of three different school snacks on morbidity outcomes.
Design
Twelve schools were randomized to either one of three feeding groups or a Control group. There were three schools per group in this cluster randomized trial. Children in feeding group schools received school snacks of a local plant-based dish, githeri, with meat, milk or extra oil added. The oil used was later found to be fortified with retinol. Physical status, food intake and morbidity outcomes were assessed longitudinally over two years.
Setting
Rural Embu District, Kenya, an area with high prevalence of vitamin A deficiency.
Subjects
Standard 1 schoolchildren (n 902; analytic sample) enrolled in two cohorts from the same schools one year apart.
Results
The Meat and Plain Githeri (i.e. githeri + oil) groups showed the greatest declines in the probability of a morbidity outcome (PMO) for total and severe illnesses, malaria, poor appetite, reduced activity, fever and chills. The Meat group showed significantly greater declines in PMO for gastroenteritis (mainly diarrhoea) and typhoid compared with the Control group, for jaundice compared with the Plain Githeri group, and for skin infection compared with the Milk group. The Milk group showed the greatest decline in PMO for upper respiratory infection. For nearly all morbidity outcomes the Control group had the highest PMO and the least decline over time.
Conclusions
The intervention study showed beneficial effects of both animal-source foods and of vitamin A-fortified oil on morbidity status.
The present study examines the effect of animal-source-food (ASF) intake on arm muscle area growth as part of a larger study examining causal links between ASF intake, growth rate, physical activity, cognitive function and micronutrient status in Kenyan schoolchildren. This randomised, controlled feeding intervention study was designed with three isoenergetic feeding interventions of meat, milk, and plain traditional vegetable stew (githeri), and a control group receiving no snack. A total of twelve elementary schools were randomly assigned to interventions, with three schools per group, and two cohorts of 518 and 392 schoolchildren were enrolled 1 year apart. Children in each cohort were given feedings at school and studied for three school terms per year over 2 years, a total of 9 months per year: cohort I from 1998 to 2000 and cohort II from 1999 to 2001. Food intake was assessed by 24 h recall every 1–2 months and biochemical analysis for micronutrient status conducted annually (in cohort I only). Anthropometric measurements included height, weight, triceps skinfold (TSF) and mid-upper-arm circumference (MUAC). Mid-upper-arm muscle area (MAMA) and mid-upper-arm fat area (MAFA) were calculated. The two cohorts were combined for analyses. The meat group showed the steepest rates of gain in MUAC and MAMA over time, and the milk group showed the next largest significant MUAC and MAMA gain compared with the plain githeri and control groups (P< 0·05). The meat group showed the least increase in TSF and MAFA of all groups. These findings have implications for increasing micronutrient intake and lean body mass in primary schoolchildren consuming vegetarian diets.
To examine changes in energy intake along with markers of dietary quality (animal-source energy and protein intakes) among household members in the presence of supplementary school feeding in rural Kenya.
Design
A 2-year, longitudinal, randomized controlled feeding intervention study.
Setting
Kyeni South Division, Embu District, Kenya.
Subjects
A total of 182 schoolchildren and selected household members.
Results
There was no evidence that schoolchildren who received supplementary snacks at school experienced reduced intakes at home or that intakes by other family members were increased at the expense of the schoolchild's intake.
Conclusions
This analysis highlights a number of factors useful in planning for supplementary feeding interventions in rural Kenya and similar communities.
To examine the effects of animal-source foods on toddler growth.
Design
A 5-month comparison feeding intervention study with one of three millet-based porridges randomized to eighteen feeding stations serving 303 children aged 11–40 months. Feeding stations served plain millet porridge (Plain group), porridge with milk (Milk group) or porridge with beef (Meat group). Anthropometry, morbidity and food intake were measured at baseline and regular intervals. Longitudinal mixed models were used to analyse growth.
Setting
Embu, Kenya.
Subjects
Two hundred and seventy-four children were included in final analyses.
Results
Linear growth was significantly greater for the Milk group than the Meat group (P = 0·0025). Slope of growth of mid-arm muscle area of the Plain group was significantly greater than in the Meat group (P = 0·0046), while the Milk group's mid-upper arm circumference growth rate was significantly greater than the Meat group's (P = 0·0418). The Milk and Plain groups’ measures did not differ.
Conclusions
Milk and meat porridges did not have a significantly greater effect on growth than plain porridge in this undernourished population. Linear growth was influenced by more than energy intakes, as the Plain group's total body weight-adjusted energy intakes were significantly greater than the Meat group's, although linear growth did not differ. Energy intakes may be more important for growth in arm muscle. The diverse age distribution in the study makes interpretation difficult. A longer study period, larger sample size and more focused age group would improve clarity of the results.
With the exception of iodine and Fe, there is still very limited information on the effect of micronutrients on cognitive function, especially among school-age children. The present analysis evaluates the relationship between dietary Fe, Zn and B vitamins (B12, B6, folate and riboflavin) and gains in cognitive test scores among school children in rural Kenya. Data for the present study were obtained from The Child Nutrition Kenya Project, a 2-year longitudinal, randomised controlled feeding intervention study using animal source foods. Dietary nutrient values were based on monthly and bimonthly 24 h recall data collected during the study period. In longitudinal regression analyses, available Fe, available Zn, vitamin B12 and riboflavin showed significant relationships with improved cognitive test scores, after controlling for confounders such as energy intake, school, socio-economic status and morbidity. Available Fe intake was associated with significantly higher gains in Raven's Coloured Progressive Matrices test scores over time. Available Zn intake was associated with significantly higher gains in digit span-total test scores over time, while vitamin B12 and riboflavin intakes were each associated with significantly higher gains in digit span-forward test scores over time. This analysis demonstrates the influence of improved dietary micronutrient status on school children's cognitive function.
Observational studies have shown that children in developing countries consuming diets containing high amounts of bioavailable nutrients, such as those found in animal-source foods, grow better. The present study investigated which specific nutrients from the diet of Kenyan school children predicted their growth. The children (n544, median age 7 years) participated in a 2-year long food supplementation study with animal-source foods. Height gain during the intervention period was positively predicted by average daily intakes of energy from animal-source foods, haem Fe, preformed vitamin A, Ca and vitamin B12. Weight gain was positively predicted by average daily intakes of energy from animal-source foods, haem Fe, preformed vitamin A, Ca and vitamin B12. Gain in mid-upper-arm muscle area was positively predicted by average daily intakes of energy from animal-source foods and vitamin B12. Gain in mid-upper-arm fat area was positively predicted by average daily intakes of energy from animal-source foods. Gain in subscapular skinfold thickness was not predicted by any of the nutrient intakes. Negative predictors of growth were total energy and nutrients that are contained in high amounts in plant foods. The study shows that growth was positively predicted by energy and nutrients that are provided in high amounts and in a bioavailable form in meat and milk, and their inclusion into the diets of children in developing countries should be part of all food-based programmes in order to improve micronutrient status and growth.
This article is to discuss the automatic continuity properties and the representation of disjointness preserving linear mappings on certain normal Fréchet algebras of complex-valued functions. This class of operators is defined by the condition that any pair of functions with disjoint cozero sets is mapped to functions with disjoint cozero sets, and subsumes the class of local operators. It turns out that such operators are always continuous outside some finite singularity set of the underlying topological space. Our main emphasis is on disjointness preserving operators from Fréchet algebras of differentiable functions. Such operators are shown to admit a canonical representation that involves weighted composition for the derivatives. This result extends the classical characterization of local operators as linear partial differential operators.
The photogalvanic effects, which require a system lacking inversion symmetry, become possible in SiGe based quantum well (QW) structures due to their built-in asymmetry. We report on observations of the circular and linear photogalvanic effects induced by infrared radiation in (001)-and (113)-orientedp–Si/Si1–xGex QW structures and analyse these observations in view of the possible symmetry of these structures. The circular photogalvanic effect arises due to optical spin orientation of free carriers in QWs with band splitting in k-space which results in a directed motion of free carriers in the plane of the QW. We discuss possible mechanisms that give rise to spin-splitting of the electronic subband states for different symmetries.
Understanding the impacts of climate change on economic behaviour is an important aspect of deciding when to take policy actions to prevent or mitigate its consequences. This book applies advanced new economics methodologies to assess impacts on potentially vulnerable aspects of the US economy: agriculture, timber, coastal resources, energy expenditure, fishing, outdoor recreation. It is intended to provide improved understanding of key issues raised in the recent Intergovernmental Panel on Climate Change (IPCC) reports. It concludes that some climate change may produce economic gains in the agriculture and forestry sectors, whereas energy, coastal structures, and water sectors may be harmed. The book will serve as an important reference for the scientific, economic, and policy community, and will also be of interest to natural resource/environmental economists as an example of economic valuation techniques. The volume will clearly be of main importance to researchers and policymakers in the US, but will also be influential as a model for assessment of impacts on economies worldwide.
Outdoor recreation activities play a significant economic and social role in the United States. In addition to contributing to total personal consumption and the Gross Domestic Product, outdoor activities support a healthy US lifestyle. The extent of research valuing the effects of environmental changes on outdoor activities reflects these important contributions. A wealth of economics literature exists on valuing the effects of environmental impacts on recreational activities and on developing methods to measure the values of nonmarket goods. Although very little research has been carried out to quantify the potential impacts of climate change on recreation, the effects of climate change on the quality and quantity of natural resources used for outdoor recreation could, in fact, adversely affect the recreation market. Given its limited coverage in past climate literature, we have taken two approaches to studying the effects of climate change on a variety of outdoor recreational activities.
Chapter 10 presents a study by Robert Mendelsohn and Marla Markowski which estimates the direct effects of climate on the demand for seven outdoor recreation activities. Mendelsohn and Markowski consider recreation activities for which climate impacts could be measured on a state-by-state basis. Using a travel cost approach to measure changes in values of all sites within each state, Mendelsohn and Markowski estimate the demand for visits to all sites and explore two econometric models to develop a range of estimates for each recreation category.
This book has sought to improve the state of the art of economic impact assessment of climate change as well as the basis for understanding the potential impacts for the United States. The team of authors involved in this effort has developed several new approaches to measure the impact of climate change on markets and, to a limited extent, nonmarket resources. These new techniques more fully incorporate adaptation, involve dynamic analysis where needed, and provide a more comprehensive analysis of seven key climate-dependent sectors (agriculture, timber, water resources, energy, coastal property, outdoor recreation, and commercial fishing). The empirical studies, taken as a group, suggest that modest warming would have a small but beneficial impact on the US economy; these results are more optimistic about global warming than past studies. This analysis of US impacts, however, does not reflect several categories of nonmarket impacts, such as health effects, aesthetics, and some ecosystem impacts. Because these consequences are omitted, the analysis does not reveal how climate will affect the quality of life. However, the comprehensive analysis of sensitive market sectors and the consistency of the climate scenario and macroeconomic assumptions provide an opportunity to synthesize and evaluate the overall impact of climate change on the US economy. In this chapter, we draw conclusions about the potential overall impact of climate change on the US economy based on the findings and uncertainties presented in the previous chapters.
In the absence of abatement measures, emissions of greenhouse gases are likely to grow over the next century largely from the burning of fossil fuels. As a result, atmospheric concentrations of carbon dioxide and other greenhouse gasses will continue to increase. The most recent IPCC (1996a) report links such increases to climate change. This poses a difficult choice for policy-makers. How much should society sacrifice to slow and possibly reverse the steady increase in greenhouse gas emissions?
Although not without controversy, there is a growing consensus among economists that near-term reductions in greenhouse gases could result in substantial costs. For example, many models suggest that the annual costs of stabilizing emissions could exceed 1–2 percent of GDP in OECD countries (IPCC, 1996a). Immediate reductions in emissions could add to costs if economies have little time to adjust to the change in policy. At the same time, global changes in climate could have undesirable impacts on both managed lands and unmanaged ecosystems. Examples of managed lands include agriculture, timber and water resources. Effects on unmanaged ecosystems could include effects on human health and biodiversity. As a result, choices made in the next few decades to either reduce emissions or continue the current pace of emissions growth have large and widespread ramifications.
The rational approach to greenhouse gas policy is to weigh the benefits of different control policies against their costs.