We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
OBJECTIVES/GOALS: The goal of this study was to understand the impact of a high sodium diet on gene networks in the kidney that correlate with blood pressure in female primates, and translating findings to women. METHODS/STUDY POPULATION: Sodium-naïve female baboons (n=7) were fed a low-sodium (LS) diet for 6 weeks followed by a high sodium (HS) diet for 6 weeks. Sodium intake, serum 17 beta-estradiol, and ultrasound-guided kidney biopsies for RNA-Seq were collected at the end of each diet. Blood pressure was continuously measured for 64-hour periods throughout the study by implantable telemetry devices. Weighted gene coexpression network analysis was performed on RNA-Seq data to identify transcripts correlated with blood pressure on each diet. Network analysis was performed on transcripts highly correlated with BP, and in silico findings were validated by immunohistochemistry of kidney tissues. RESULTS/ANTICIPATED RESULTS: On the LS diet, Na+ intake and serum 17 beta-estradiol concentration correlated with BP. Cell type composition of renal biopsies was consistent among all animals for both diets. Kidney transcriptomes differed by diet; analysis by unbiased weighted gene co-expression network analysis revealed modules of genes correlated with BP on the HS diet. Network analysis of module genes showed causal networks linking hormone receptors, proliferation and differentiation, methylation, hypoxia, insulin and lipid regulation, and inflammation as regulators underlying variation in BP on the HS diet. Our results show variation in BP correlated with novel kidney gene networks with master regulators PPARG and MYC in female baboons on a HS diet. DISCUSSION/SIGNIFICANCE: Previous studies in primates to identify molecular networks dysregulated by HS diet focused on males. Current clinical guidelines do not offer sex-specific treatment plans for sodium sensitive hypertension. This study leveraged variation in BP as a first step to identify correlated kidney regulatory gene networks in female primates after a HS diet.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
Self-reported activity restriction is an established correlate of depression in dementia caregivers (dCGs). It is plausible that the daily distribution of objectively measured activity is also altered in dCGs with depression symptoms; if so, such activity characteristics could provide a passively measurable marker of depression or specific times to target preventive interventions. We therefore investigated how levels of activity throughout the day differed in dCGs with and without depression symptoms, then tested whether any such differences predicted changes in symptoms 6 months later.
Design, setting, participants, and measurements:
We examined 56 dCGs (mean age = 71, standard deviation (SD) = 6.7; 68% female) and used clustering to identify subgroups which had distinct depression symptom levels, leveraging baseline Center for Epidemiologic Studies of Depression Scale–Revised Edition and Patient Health Questionnaire-9 (PHQ-9) measures, as well as a PHQ-9 score from 6 months later. Using wrist activity (mean recording length = 12.9 days, minimum = 6 days), we calculated average hourly activity levels and then assessed when activity levels relate to depression symptoms and changes in symptoms 6 months later.
Results:
Clustering identified subgroups characterized by: (1) no/minimal symptoms (36%) and (2) depression symptoms (64%). After multiple comparison correction, the group of dCGs with depression symptoms was less active from 8 to 10 AM (Cohen’s d ≤ −0.9). These morning activity levels predicted the degree of symptom change on the PHQ-9 6 months later (per SD unit β = −0.8, 95% confidence interval: −1.6, −0.1, p = 0.03) independent of self-reported activity restriction and other key factors.
Conclusions:
These novel findings suggest that morning activity may protect dCGs from depression symptoms. Future studies should test whether helping dCGs get active in the morning influences the other features of depression in this population (i.e. insomnia, intrusive thoughts, and perceived activity restriction).
We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array’s receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.
Low heart rate variability (HRV) predicts sudden cardiac death. Long-chain (LC) n-3 PUFA (C20–C22) status is positively associated with HRV. This cross-sectional study investigated whether vegans aged 40–70 years (n 23), whose diets are naturally free from EPA (20 : 5n-3) and DHA (22 : 6n-3), have lower HRV compared with omnivores (n 24). Proportions of LC n-3 PUFA in erythrocyte membranes, plasma fatty acids and concentrations of plasma LC n-3 PUFA-derived lipid mediators were significantly lower in vegans. Day-time interbeat intervals (IBI), adjusted for physical activity, age, BMI and sex, were significantly shorter in vegans compared with omnivores (mean difference −67 ms; 95 % CI −130, −3·4, P<0·05), but there were no significant differences over 24 h or during sleep. Vegans had higher overall HRV, measured as 24 h standard deviation of normal-to-normal intervals (SDNN) (mean adjusted difference 27 ms; 95 % CI 1, 52, P=0·039). Conversely, vegans presented with decreased 8 h day-time HRV: mean adjusted difference in SDNN −20 ms; 95 % CI −37, −3, P=0·021, with no differences during nocturnal sleep. Day-time parameters of beat-to-beat HRV (root of the mean of the sum of the squares of differences between adjacent normal-to-normal intervals, percentage of adjacent normal-to-normal intervals that differ by >50 % and high-frequency power) were similarly lower in vegans, with no differences during sleep. In conclusion, vegans have higher 24 h SDNN, but lower day-time HRV and shorter day-time IBI relative to comparable omnivores. Vegans may have reduced availability of precursor markers for pro-resolving lipid mediators; it remains to be determined whether there is a direct link with impaired cardiac function in populations with low-n-3 status.
Bahiagrass is used for roadsides, pastures, and lawns in the southeastern United States mainly because of drought and nematode tolerance. Metsulfuron is a sulfonylurea herbicide, which selectively controls bahiagrass in bermudagrass. Certain cultivars of bahiagrass were observed to be tolerant to recommended rates of metsulfuron. Therefore, research was conducted to investigate the susceptibility of five major bahiagrass cultivars to metsulfuron applied at increasing rates to 42 g ai/ha. Five bahiagrass cultivars were evaluated: ‘Pensacola’, ‘Tifton-9’, ‘Argentine’, ‘Common’, and ‘Paraguayan’. Argentine, Common, and Paraguayan cultivars showed a four- to fivefold increased tolerance to metsulfuron compared with Pensacola. Because of yearly inconsistencies, results for Tifton-9 were inconclusive.
Two broad aims drive weed science research: improved management and improved
understanding of weed biology and ecology. In recent years, agricultural
weed research addressing these two aims has effectively split into separate
subdisciplines despite repeated calls for greater integration. Although some
excellent work is being done, agricultural weed research has developed a
very high level of repetitiveness, a preponderance of purely descriptive
studies, and has failed to clearly articulate novel hypotheses linked to
established bodies of ecological and evolutionary theory. In contrast,
invasive plant research attracts a diverse cadre of nonweed scientists using
invasions to explore broader and more integrated biological questions
grounded in theory. We propose that although studies focused on weed
management remain vitally important, agricultural weed research would
benefit from deeper theoretical justification, a broader vision, and
increased collaboration across diverse disciplines. To initiate change in
this direction, we call for more emphasis on interdisciplinary training for
weed scientists, and for focused workshops and working groups to develop
specific areas of research and promote interactions among weed scientists
and with the wider scientific community.
Understanding pesticide metabolism in plants and microorganisms is necessary for pesticide development, for safe and efficient use, as well as for developing pesticide bioremediation strategies for contaminated soil and water. Pesticide biotransformation may occur via multistep processes known as metabolism or cometabolism. Cometabolism is the biotransformation of an organic compound that is not used as an energy source or as a constitutive element of the organism. Individual reactions of degradation–detoxification pathways include oxidation, reduction, hydrolysis, and conjugation. Metabolic pathway diversity depends on the chemical structure of the xenobiotic compound, the organism, environmental conditions, metabolic factors, and the regulating expression of these biochemical pathways. Knowledge of these enzymatic processes, especially concepts related to pesticide mechanism of action, resistance, selectivity, tolerance, and environmental fate, has advanced our understanding of pesticide science, and of plant and microbial biochemistry and physiology. There are some fundamental similarities and differences between plant and microbial pesticide metabolism. In this review, directed to researchers in weed science, we present concepts that were discussed at a symposium of the American Chemical Society (ACS) in 1999 and in the subsequent book Pesticide Biotransformation in Plants and Microorganism: Similarities and Divergences, edited by J. C. Hall, R. E. Hoagland, and R. M. Zablotowicz, and published by Oxford University Press, 2001.
Norman Gary Lane (1930–2006), president of the Paleontological Society (1987–88) and founder of “Friends of the Echinoderms” (1967), contributed to the lives of each of the authors of this essay. He was an excellent paleontologist, a very fine person, and our friend. He influenced each of us, in ways large and small, and through his wisdom, insight, and sheer human decency he helped each of us to become better scientists, better teachers, and better human beings. We are proud to number ourselves among a great many for whom Gary Lane was a role model.
Edited by
Susanna Pietropaolo, Centre National de la Recherche Scientifique (CNRS), Paris,Frans Sluyter, University of Portsmouth,Wim E. Crusio, Centre National de la Recherche Scientifique (CNRS), Paris
Nanomedicine is yielding new and improved treatments and diagnostics for a range of diseases and disorders. Nanomedicine applications incorporate materials and components with nanoscale dimensions (often defined as 1-100 nm, but sometimes defined to include dimensions up to 1000 nm, as discussed further below) where novel physiochemical properties emerge as a result of size-dependent phenomena and high surface-to-mass ratio. Nanotherapeutics and in vivo nanodiagnostics are a subset of nanomedicine products that enter the human body. These include drugs, biological products (biologics), implantable medical devices, and combination products that are designed to function in the body in ways unachievable at larger scales. Nanotherapeutics and in vivo nanodiagnostics incorporate materials that are engineered at the nanoscale to express novel properties that are medicinally useful. These nanomedicine applications can also contain nanomaterials that are biologically active, producing interactions that depend on biological triggers. Examples include nanoscale formulations of insoluble drugs to improve bioavailability and pharmacokinetics, drugs encapsulated in hollow nanoparticles with the ability to target and cross cellular and tissue membranes (including the bloodbrain barrier) and to release their payload at a specific time or location, imaging agents that demonstrate novel optical properties to aid in locating micrometastases, and antimicrobial and drug-eluting components or coatings of implantable medical devices such as stents.